РУЛОННЫЙ КРОВЕЛЬНЫЙ МАТЕРИАЛ (ВАРИАНТЫ) Российский патент 2000 года по МПК E04D5/10 C08L95/00 C08L23/34 

Описание патента на изобретение RU2158807C2

Изобретение относится к строительству, а именно к гибким рулонным материалам для гидроизоляции кровель жилых и промышленных зданий.

В настоящее время в строительстве используется целый ряд рулонных полимерных и композиционных материалов, начиная от рубероида и заканчивая наиболее современными материалами на основе силиконовых каучуков и хлорсульфированного полиэтилена. Общим недостатком таких материалов является их склонность к разрушению под действием солнечной радиации, что приводит к необходимости защищать эти материалы с помощью специальных посылок или покрытий.

Аналогом предлагаемого изобретения по технической сущности является рулонный кровельный материал "Изолен" ТУ 34.15.10921-93, использующий в качестве полимерной основы хлорсульфированный полиэтилен. Этот материал сравнительно долговечен, однако и он разрушается под действием УФ-излучения.

Наиболее близким к предложенному изобретению является рулонный кровельный материал - фольгоизол, содержащий алюминиевую фольгу, покрытую с нижней стороны слоем битумно-полимерного вяжущего, смешанного с минеральным наполнителем и антисептиком (см. Бурмистров Г.Н. Кровельные материалы. 3-е изд. М.: Стройиздат 1990, с. 57).

Недостатком этого материала является невысокая морозостойкость (температура охрупчивания связующего -18oC), сравнительно высокое водопоглощение (4 г/м2) и невысокая гибкость, приводящая к быстрому разрушению материала в реальных условиях эксплуатации.

Задачей изобретения является создание легкого гибкого рулонного гидроизоляционного материала, сочетающего стойкость к солнечной радиации и пониженную водо- и газопроницаемость с высокой прочностью, устойчивостью к воздействию повышенных и пониженных температур и способностью не распространять пламя по поверхности в случае возникновения пожара.

Поставленная задача решается тем, что в рулонном кровельном материале, содержащем слой металла и расположенный под ним полимерный слой, полимерный слой имеет толщину 0,01-0,5 мм и выполнен из композиции, содержащей, мас.%: хлорсульфированный полиэтилен 37-65, битум 25-62, триэтаноламмониевую соль ди-2-этилгексилфосфорной кислоты 1-6, ионoл 0,01-0,2 и минеральный наполнитель 0-5, в качестве слоя металла используют слой меди толщиной 0,035-0,1 мм, дополнительно он снабжен слоем минеральной тканевой основы, пропитанной указанной полимерной композицией толщиной 0,085-1,25 мм, расположенным под полимерным слоем.

Также поставленная задача решается тем, что в рулонном кровельном материале, содержащем слой алюминия и расположенный под ним полимерный слой, слой алюминия имеет толщину 0,05-0,2 мм, а полимерный слой, имеющий толщину 0,01-0,5 мм, выполнен из композиции, включающей хлорсульфированный полиэтилен 37-65 мас.%, битум 25-62 мас.%, триэтаноламмониевую соль ди-2-этилгексилфосфорной кислоты 1-6 мас.%, ионол 0,01-0,2 мас.%, минеральные наполнители 0-5 мас.% и дополнительный слой на основе минеральной ткани, пропитанной вышеуказанной полимерной композицией, имеющий толщину 0,085-1,25 мм, расположенный под полимерным слоем.

Для изготовления рулонного кровельного материала используют следующие материалы.

Хлорсульфированный полиэтилен марки ХСПЭ 20 И (ТУ 6-55-9-90), битум марки БН 90/10 (ГОСТ 22245-76), тальк (ГОСТ 19284-79) или окись магния (возможно смесь окисей магния и кальция). Триэтаноламмониевую соль ди-2-этилгексилфосфорной кислоты получают взаимодействием эквимолярных количеств триэтаноламина (ТУ 6-02-916-74) и ди-2-этилгексилфосфорной кислоты (ТУ 6-02-1047-76). Ранее триэтаноламмониевая соль ди-2-этилгексилфосфорной кислоты использовалась как добавка к бетону. Нами обнаружено, что эта соль повышает прочность композиционного материала по настоящему изобретению. Благодаря высокой эластичности представленная полимерная композиция способна гасить без разрушения всего композиционного материала напряжения, возникающие в нем в результате неодинакового термического расширения компонентов.

Пример 1. На медную фольгу толщиной 0,035 мм наносят слой 25%-ного раствора в толуоле полимерной композиции, содержащей 50% ХСПЭ 20 И, 45% битума БН 90/10, 3% триэтаноламмониевой соли ди-2-этилгексилфосфорной кислоты (ТЭАДАФ), 0,01% ионола и около 2% талька из расчета 500 г раствора на 1 м2 фольги и высушивают при температуре 20oC в течение 24 ч. На стеклоткань ТСК-100 наносят вышеуказанный раствор полимерной композиции из расчета 1000 г раствора на 1 м2 стеклоткани и также высушивают. Затем на фольгу и стеклоткань наносят дополнительно по 150 г/м2 вышеуказанного раствора и соединяют их между собой, накладывая стеклоткань на фольгу, лежащую на жестком основании, удаляя пузыри путем прикатки материала резиновым валиком. Окончательно высушивают материал, выдерживая его в вентилируемой камере, нагретой до 45oC в течение 24 ч. В результате получается материал, имеющий следующие свойства (см. табл. 1).

На чертеже приведена схема расположения слоев материала.

Вместо вышеуказанной стеклоткани марки ТСК-100 по ТУ 6-48-0204949-19-93 могут быть с успехом использованы стеклоткани других марок как кровельные, так и электроизоляционные, а также ткани из базальтового волокна, например ткань марки ТБК-100 по ТУ 5952-027-00204949-95. Приведенными примерами не исчерпываются возможные варианты негорючей тканевой основы.

Оптимальным является использование медной фольги по ТУ 48-7-38-85 толщиной 0,035-0,05 мм. Можно использовать и другие виды медной фольги.

Раствор полимерной композиции на основе ХСПЭ в ароматическом растворителе (наряду с толуолом можно использовать также бензол, ксилолы, этилбензол, нефтяной сольвент, каменноугольный сольвент и другие технические смеси ароматических растворителей) получают путем перемешивания компонента с растворителем при температуре 70-90oC. В качестве товарной формы могут быть использованы растворы-полуфабрикаты, например лак ХП-734 (ТУ 6-00-5763450-82-89), представляющий собой 14-17%-ный раствор ХСПЭ в нефтяном сольвенте или иной раствор ХСПЭ, отвечающий целям настоящего изобретения, и раствор битума БН 90/10 с добавками триэтаноламмониевой соли ди-2-этилгексилфосфорной кислоты, ионола и талька, концентрация которых подобрана таким образом, чтобы при смешении образовать полимерную композицию требуемого состава. Ниже приводятся примеры получения материала по настоящему изобретению с использованием материалов-полуфабрикатов.

Пример 2. Получение полуфабрикатов полимерной композиции.

К 100 кг толуола, помещенного в реактор, снабженный лопастной мешалкой, и нагретого до температуры 80oC, прибавляют 96 кг битума БН-90/10 и перемешивают до полной гомогенизации. В полученный битумный раствор прибавляют 10 кг триэтаноламмониевой соли ди-2-этилгексилфосфорной кислоты и 0,2 кг ионола. Компоненты перемешивают 1 ч при вышеуказанной температуре и затаривают (компонент 1).

Аналогичным образом готовят 500 кг 17%-ного раствора ХСПЭ 20 И в толуоле. В качестве растворителя наряду с ароматическими углеводородами можно использовать также хлоруглеводороды, например четыреххлористый углерод или трихлорэтилен (компонент 2).

Получение полимерной композиции.

К 103,1 кг компонента 1 добавляют 300 кг компонента 2 и после кратковременного перемешивания при комнатной температуре используют полученную полимерную композицию для получения рулонного кровельного материала в соответствии с примером 1.

Пример 3. К 103,1 кг компонента 1 по примеру 2 добавляют 200 кг компонента 2 и после кратковременного перемешивания при комнатной температуре используют полученную полимерную композицию для получения рулонного кровельного материала в соответствии с примером 1.

Аналогичным образом, варьируя концентрацию раствора XСПЭ в компоненте 2, содержание битума, триэтаноламмониевой соли ди-2-этилгексилфосфорной кислоты и ионола в компоненте 1, а также используемое соотношение компонентов 1 и 2, получают полимерные композиции по примерам 4-7.

В табл. 2 приведены основные характеристики полученных подобным образом полимерных композиций. Свойства рулонных кровельных композиций, полученных с использованием перечисленных полимерных композиций, соответствуют данным, приведенным в табл. 1. Уменьшение доли ХСПЭ нижеприведенного в табл. 2 минимального значения приводит к композиционным материалам с ухудшенными, не соответствующими данным табл. 2 свойствами. Уменьшение содержания битума приводит к уменьшению максимально достижимой массовой доли нелетучих веществ в композиции. Триэтаноламмониевая соль ди-2-этилгексилфосфорной кислоты (ТЭАДАФ) увеличивает адгезию полимерной композиции к металлам и дополнительно сшивает макромолекулы ХСПЭ, повышая таким образом долговечность материала.

Получение материала может быть осуществлено и без использования растворителей, например путем горячей прокатки фольги, пленки вышеуказанного полимера и тканевой основы или каландрированием. При этом температура процесса не должна превышать 125oC. Локальные перегревы приводят к браку, поэтому наиболее предпочтительным путем получения материала по настоящему изобретению является использование вышеописанного раствора полимерной композиции с последующей сушкой. Выделяющийся в процессе сушки растворитель может быть регенерирован или сожжен с утилизацией выделяющегося тепла. Соответствующие устройства входят в стандартный комплект оборудования ряда типов сушильных камер.

Использование полимерной композиции взамен растворов ХСПЭ позволяет существенно снизить количество растворителя, выделяющегося в окружающую среду, а также обеспечить возможность создания композиционного материала, наружным слоем которого является алюминий.

Пример 8. Получают материал по примеру 1, заменив медную фольгу на алюминиевую с толщиной 0,1 мм.

Свойства материала по примеру 8 соответствуют данным, приведенным в табл. 1 с учетом допустимых отклонений.

Материалы, отвечающие формуле настоящего изобретения, выпускаются под торговой маркой МОЛАХИТ (наружный слой - медь) и АЛОХИТ (наружный слой - алюминий).

Монтаж материалов на кровле осуществляется известными методами.

Для усиления и/или изменения декоративного эффекта материал может быть искусственно состарен или покрыт лаком. Наиболее подходящим лаком является раствор ХСПЭ в ароматических или хлоруглеводородных растворителях с добавкой 1% бензотриазола или 2-меркаптобензотиазола. Медь, покрытая таким лаком, не подвергается атмосферной коррозии в течение всего срока эксплуатации материала.

Наряду с использованием для изготовления кровель материалы по настоящему изобретению могут быть использованы и для других целей: в качестве отделочного или конструкционного для изготовления водостоков, свесов и иных элементов кровли и наружной отделки фасадов зданий, для отделки внутренних интерьеров, в качестве теплоотражающего экрана, в том числе внутри стеновых панелей, для гидроизоляции подвалов бассейнов и резервуаров, в том числе резервуаров с питьевой водой, в качестве электротехнического материала, в том числе для экранирования электромагнитных излучений внутри помещений, в качестве подложки для выращивания эпитаксиальных пленок сверхпроводящих шпинелей и др.

Как показали санитарно-химические исследования, при использовании материала внутри помещений он не выделяет вредных веществ в количествах, превышающих допустимые нормы.

Похожие патенты RU2158807C2

название год авторы номер документа
РУЛОННЫЙ КРОВЕЛЬНЫЙ МАТЕРИАЛ 1997
  • Левичев А.Н.
RU2148134C1
КРОВЕЛЬНЫЙ РУЛОННЫЙ МАТЕРИАЛ 1994
  • Николаев В.Н.
  • Присадков А.А.
RU2095529C1
Изоляционный материал 2019
  • Шульженко Юрий Петрович
RU2726080C2
ИЗОЛЯЦИОННАЯ ПЛИТА 2000
  • Волков Н.А.
  • Гавриленко О.В.
  • Гохман Л.М.
  • Конных А.А.
  • Коротин В.Н.
  • Куракин П.П.
  • Чаленко В.В.
  • Юмашев В.М.
RU2186689C1
СОСТАВ ДЛЯ ПОКРЫТИЯ, ДЕЗИНФИЦИРУЮЩЕГО ВОЗДУХ ВНУТРИ ПОМЕЩЕНИЙ 2002
  • Левичев А.Н.
  • Павлюкович Н.Г.
  • Валецкий П.М.
RU2236428C1
РУЛОННЫЙ КРОВЕЛЬНЫЙ И ГИДРОИЗОЛЯЦИОННЫЙ МАТЕРИАЛ "БИКРОСТ" 1997
  • Худайбердин Р.А.
  • Лушпин В.М.
  • Темникова Г.С.
  • Зиннуров Р.Б.
RU2134330C1
РУЛОННЫЙ КРОВЕЛЬНЫЙ И ГИДРОИЗОЛЯЦИОННЫЙ МАТЕРИАЛ "БИКРОТЭП" 1997
  • Худайбердин Р.А.
  • Лушпин В.М.
  • Темникова Г.С.
  • Зиннуров Р.Б.
RU2134756C1
МАСТИКА КРОВЕЛЬНАЯ ГИДРОИЗОЛЯЦИОННАЯ 2010
  • Юмагузин Рафаэль Рауфович
  • Лакеев Сергей Николаевич
RU2447111C2
ГИДРОИЗОЛЯЦИОННАЯ КОМПОЗИЦИЯ ДЛЯ ПОКРЫТИЯ 1995
  • Завадская В.П.
  • Малков А.Г.
  • Безрукова Т.В.
RU2086596C1
РУЛОННЫЙ КРОВЕЛЬНЫЙ И ГИДРОИЗОЛЯЦИОННЫЙ МАТЕРИАЛ "БИКРОЭЛАСТ" 1997
  • Худайбердин Р.А.
  • Лушпин В.М.
  • Темникова Г.С.
  • Зиннуров Р.Б.
RU2133807C1

Иллюстрации к изобретению RU 2 158 807 C2

Реферат патента 2000 года РУЛОННЫЙ КРОВЕЛЬНЫЙ МАТЕРИАЛ (ВАРИАНТЫ)

Изобретение относится к строительству, а именно к гибким рулонным материалам для гидроизоляции кровель жилых и промышленных зданий. Рулонный кровельный материал содержит последовательно расположенные слои: медь, толщиной 0,035-0,1 мм; полимерный слой толщиной 0,01-0,5 мм и слой минеральной тканевой основы, пропитанной полимерной композицией, толщиной 0,085-1,25 мм. Полимерная композиция содержит, мас.%: хлорсульфированный полиэтилен 37-65; битум 25-62; триэтаноламмониевую соль ди-2-этилгексилфосфорной кислоты 1-6; ионол 0,01-0,2 и минеральный наполнитель 0-5. В другом варианте рулонного кровельного материала в качестве металла он содержит алюминий толщиной 0,05-0,2 мм. Технический результат: получение легкого гибкого рулонного гидроизоляционного материала, обладающего стойкостью к солнечной радиации, пониженной водо- и газопроницаемостью, высокой прочностью, устойчивостью к температурному воздействию и способностью не распространять пламя при пожаре. 2 с. п. ф-лы, 2 табл., 1 ил.

Формула изобретения RU 2 158 807 C2

1. Рулонный кровельный материал, содержащий слой металла и расположенный под ним полимерный слой, отличающийся тем, что полимерный слой имеет толщину 0,01 - 0,5 мм и выполнен из композиции, содержащей, мас.%: хлорсульфированный полиэтилен 37 - 65; битум 25 - 62; триэтаноламмониевую соль ди-2-этилгексилфосфорной кислоты 1 - 6; ионол 0,01 - 0,2 и минеральный наполнитель 0 - 5, в качестве слоя металла используют слой меди толщиной 0,035 - 0,1 мм и дополнительно он снабжен слоем минеральной тканевой основы, пропитанной указанной полимерной композицией, толщиной 0,085 - 1,25 мм, расположенным под полимерным слоем. 2. Рулонный кровельный материал, содержащий слой алюминия и расположенный под ним полимерный слой, отличающийся тем, что слой алюминия имеет толщину 0,05 - 0,2 мм, а полимерный слой, имеющий толщину 0,01 - 0,5 мм, выполнен из композиции, включающей хлорсульфированный полиэтилен 37 - 65 мас.%; битум 25 - 62 мас. %; триэтаноламмониевую соль ди-2-этилгексилфосфорной кислоты 1 - 6 мас.%; ионол 0,01 - 0,2 мас.%; минеральные наполнители 0 - 5 мас. % и дополнительный слой на основе минеральной ткани, пропитанной вышеуказанной полимерной композицией, имеющий толщину 0,085 - 1,25 мм, расположенный под полимерным слоем.

Документы, цитированные в отчете о поиске Патент 2000 года RU2158807C2

БУРМИСТРОВ Г.Н
Кровельные материалы, 3-е изд
- М.: Стройиздат, 1990, с
Способ получения на волокне оливково-зеленой окраски путем образования никелевого лака азокрасителя 1920
  • Ворожцов Н.Н.
SU57A1
СПОСОБ ИЗГОТОВЛЕНИЯ РУЛОННОГО ГИДРОИЗОЛЯЦИОННОГО, КРОВЕЛЬНОГО И ТОМУ ПОДОБНОГО МАТЕРИАЛА 1934
  • Кацнельсон А.С.
SU42854A1
0
SU220825A1
Покровная масса 1974
  • Попченко Сергей Николаевич
  • Кисина Антонина Михайловна
  • Трушин Алексей Никифорович
  • Куценко Виталий Иванович
  • Выродов Александр Антонович
  • Михайличенко Мария Михайловна
  • Симонов Юрий Гаврилович
  • Мурыгин Василий Николаевич
SU567734A1
Гидроизоляционная композиция 1980
  • Мизонова Валентина Ивановна
  • Мелькумова Тамара Алексеевна
  • Бреева Галина Ивановна
SU885497A1
Способ изготовления гидроизоляционного материала с клеевым слоем 1987
  • Макаренкова Людмила Павловна
  • Пискарев Валерий Алексеевич
  • Нуралов Александр Рубенович
  • Могилевский Владимир Давидович
SU1599220A1
КРОВЕЛЬНЫЙ РУЛОННЫЙ МАТЕРИАЛ 1994
  • Николаев В.Н.
  • Присадков А.А.
RU2095529C1
GB 1519045 A, 26.07.1978
Совмещенная обмотка статора электрической машины 1982
  • Попов Виктор Иванович
SU1032532A1
СПОСОБ ОЧИСТКИ СТЕНОК БУНКЕРОВ ОТ ЗАВИСШЕГО СЫПУЧЕГО МАТЕРИАЛА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1996
  • Курленя М.В.
  • Ткач Х.Б.
  • Смоляницкий Б.Н.
  • Лудзиш В.С.
  • Брагин В.Е.
  • Пантелеев Е.А.
  • Лугачев В.Г.
  • Васильев Г.Г.
  • Кулаков Г.И.
RU2136565C1
DE 2827136 A1, 30.10.1980
DE 3409897 A, 19.09.1985
DE 3444669 A1, 12.06.1986
DE 4001112 A1, 26.07.1990.

RU 2 158 807 C2

Авторы

Левичев А.Н.

Даты

2000-11-10Публикация

1997-11-28Подача