СПОСОБ ОХЛАЖДЕНИЯ РАБОЧЕГО КОЛЕСА ТУРБИНЫ МНОГОРЕЖИМНОГО ТУРБОРЕАКТИВНОГО ДВИГАТЕЛЯ Российский патент 2000 года по МПК F01D25/12 F02C7/12 

Описание патента на изобретение RU2159335C1

Изобретение относится к области охлаждения турбореактивных двигателей а именно к способам охлаждения рабочих колес высокотемпературных турбин многорежимных авиационных двигателей.

Известен способ охлаждения рабочего колеса турбины многорежимного турбореактивного двигателя, включающий подачу охлаждающего воздуха в систему охлаждения рабочего колеса [1].

Однако в этом способе охлаждающий воздух расходуется в полной мере на всех режимах, что приводит к снижению КПД турбины.

Указанный недостаток частично решен в другом техническом решении, наиболее близком к изобретению, а именно, в способе охлаждения рабочего колеса турбины многорежимного турбореактивного двигателя, включающем подачу охлаждающего воздуха в систему охлаждения рабочего колеса и изменение его расхода по режимам работы двигателя [2].

В указанном способе охлаждающий воздух подают в систему охлаждения рабочего колеса на разных режимах по-разному. Так через одно сопловое устройство охлаждающий воздух поступает в систему охлаждения рабочего колеса на крейсерском режиме и через два полностью открытых сопловых устройства на максимальном, что позволяет несколько повысить коэффициент полезного действия (КПД).

Однако, и в этом решении на крейсерском режиме используется охлаждающий воздух, по своим параметрам рассчитанный на максимальный режим работы двигателя, то есть эффективность использования этого воздуха здесь невысока. Кроме того, эффективность охлаждения рабочих лопаток ухудшается вследствие снижения расхода охлаждающего воздуха, а следовательно, уменьшения скоростей течения воздуха в каналах лопатки, что ведет к снижению эффективности теплообмена. Это значит, что придется расходовать на охлаждение лопатки больше "дорогого" воздуха, взятого из проточной части двигателя за компрессором. Все это снижает КПД и увеличивает удельные расходы топлива.

Задача изобретения - повысить КПД турбины и снизить удельные расходы топлива на крейсерских режимах.

Указанная задача достигается тем, что в способе охлаждения рабочего колеса турбины многорежимного турбореактивного двигателя, включающем подачу охлаждающего воздуха в систему охлаждения рабочего колеса и изменение его расхода по режимам работы двигателя, в нем на крейсерских режимах работы двигателя, наряду с уменьшением расхода охлаждающего воздуха, подводят газ из проточной части турбины на вход системы охлаждения рабочего колеса турбины, при этом соотношение массовых расходов газа и охлаждающего воздуха выбирают в пределах 0,8 - 1,6.

Новым здесь является то, что на крейсерских режимах работы, наряду с уменьшением расхода охлаждающего воздуха, подводят газ из проточной части турбины на вход системы охлаждения рабочего колеса турбины, при этом соотношение массовых расходов газа и охлаждающего воздуха выбирают в пределах 0,8 - 1,6.

Подмешивая газ из проточной части к охлаждающему воздуху перед его подачей в систему охлаждения рабочего колеса, мы, во-первых, в допустимых режимом работы двигателя пределах используем для охлаждения более дешевую охлаждаемую смесь для охлаждения рабочего колеса турбины, во-вторых, сохраняем эффективность теплообмена в охлаждающих каналах на уровне максимального режима, так как скорости течения смеси в каналах остаются близкими, и, в-третьих, несколько "прогревая" в разумных пределах рабочее колесо, мы уменьшаем радиальные зазоры между корпусом и рабочим колесом. Таким образом, удается поднять КПД турбины и уменьшить удельный расход топлива на самом протяженном по времени крейсерском режиме.

Из уровня техники неизвестны технические решения, в которых на крейсерских режимах работы двигателя, наряду с уменьшением расхода охлаждающего воздуха, подводят газ из проточной части турбины на вход системы охлаждения рабочего колеса турбины, при этом соотношение массовых расходов газа и охлаждающего воздуха выбирают в пределах 0,8 - 1,6. Поэтому можно сделать вывод о соответствии заявленного решения критериям "новизны" и изобретательского уровня".

На чертеже изображен продольный разрез устройства, реализующего способ охлаждения рабочего колеса турбины многорежимного турбореактивного двигателя.

Устройство содержит управляемые дроссели 1, установленные на корпусе, коллектор 3, полые лопатки 4 соплового аппарата 5 турбины, сопловое устройство 6 с внутренней полостью 7, диск 8 рабочего колеса 9, имеющего вентилируемую поверхность 10. В составе рабочего колеса 9 имеются внутренние радиальные охлаждающие каналы 11 диска 8 и каналы 12 рабочих лопаток 13. Сопловой аппарат 5 и рабочие лопатки 13 расположены в проточной части 14 турбины. Придисковая полость 15 и проточная часть 14 турбины сообщены между собой. Радиальные охлаждающие каналы 11 диска 8 и каналы 12 рабочих лопаток 13 составляют систему охлаждения рабочего колеса 9 с входом 16. В сопловых лопатках 4 имеются транзитные каналы 17.

Способ осуществляют следующим образом.

При работе двигателя на максимальном режиме полностью открывают управляемый дроссель 1 и охлаждающий воздух из коллектора 3 подают через транзитные каналы 17 полых лопаток 4 соплового аппарата 5 во внутреннюю полость 7 соплового устройства 6, откуда он поступает к поверхности 10 диска 8 рабочего колеса 9. При этом основная часть воздуха - 90% поступает в радиальные охлаждающие каналы 11 диска 8 и каналы 12 рабочих лопаток 13, а оставшаяся часть воздуха, составляющая 10%, поступает на вентиляцию боковой поверхности 11 диска 8 и вытесняется в проточную часть 14 турбины. Причем, давление в придисковой полости 15 практически не отличается от давления в проточной части 14 турбины ввиду отсутствия между последним и полостью 15 лабиринтных воздушных уплотнений.

При переходе двигателя на крейсерский режим прикрывают управляемый дроссель 1 и уменьшают на 60% относительный массовый расход закомпрессорного воздуха, поступающего в транзитные каналы 17. Подводят газ из проточной части 14 турбины на вход 16 системы охлаждения рабочего колеса 9. Центробежные силы, действующие в радиальных каналах 11 диска 8 и каналах 12 лопаток 13 рабочего колеса 9, снижают давление на входе 16 системы охлаждения рабочего колеса. Под воздействием этого происходит перераспределение рабочего тела в полости 15, взамен вытесняемых 10% охлаждающего воздуха происходит втекание газа из проточной части 14 в полость 15 в количестве, равном 50% от полного расхода охлаждающего воздуха. Вследствие этого в полости 15 образуется "подогретая" газовоздушная смесь, где отношение массового расхода газа к массовому расходу воздуха равно 1,2.

Полученная газовоздушная смесь поступает в радиальные каналы 11 диска 8 и каналы 12 лопаток 13, где, во-первых, относительно "дешевая" газовоздушная смесь достаточно эффективно охлаждает элементы рабочего колеса 9 турбины и, во-вторых, "прогревая" их относительно максимального режима работы двигателя, уменьшает радиальные зазоры между лопаткой и корпусом турбины. Кроме того, следует отметить, что скорости течения газовоздушной смеси на крейсерском режиме и течения охлаждающего воздуха на максимальном режиме в каналах 11 и 12 близки друг к другу, а значит эффективность теплообмена на крейсерском режиме по сравнению с прототипом здесь выше.

Расчеты показывают, что разогрев рабочего колеса 9, в среднем на 25% по отношению к исходному уровню, оставаясь на 12% ниже значений, соответствующих максимальному режиму, приводит к увеличению размеров рабочего колеса 9 и снижению относительного радиального зазора с 2,0% до 0,9%. При меньшем прикрытии управляемого дросселя 1, снижающем расход охлаждающего воздуха на 55%, отношение массовых расходов газа и охлаждающего воздуха = 0,8, что уменьшает относительный радиальный зазор до 1,5%. При снижении расхода охлаждающего воздуха на 65% отношение массовых расходов газа и охлаждающего воздуха = 1,6 и относительный радиальный зазор уменьшается до 0,5%. При этом повышается температура диска 8 и лопаток 13 рабочего колеса 9 до уровня, не превышающего 85 - 90% от максимального значения, допустимого при максимальной частоте вращения ротора.

Таким образом, предлагаемый способ поддерживает оптимальные условия теплообмена в охлаждающих каналах рабочих лопаток и оптимальный радиальный разор между корпусом и лопаткой турбины.

Реализация предлагаемого изобретения позволит существенно повысить эффективный КПД высоконапорных охлаждаемых турбин и снизить удельный расход топлива на крейсерском режиме на 1,5 - 2,0% по сравнению с известным прототипом. Кроме того, реализация предлагаемого изобретения освобождает от необходимости применения сложных устройств для управляемого обогрева корпуса турбины и воздушных лабиринтных уплотнений между боковыми поверхностями рабочего колеса и корпуса турбин.

Применение в предлагаемом способе устройств и приемов, которые каждый в отдельности применяются в промышленности, позволяет сделать вывод о соответствии предложения критерию "промышленная применимость".

Источники информации:
1. Патент США N 4275990, НКИ 416-95, опубл. 1981 г.

2. Патент США N 4807433, НКИ 60-39.29, опубл. 1989 г.

Похожие патенты RU2159335C1

название год авторы номер документа
СИСТЕМА ОХЛАЖДЕНИЯ ТУРБИНЫ ТУРБОРЕАКТИВНОГО ДВИГАТЕЛЯ 2001
  • Гойхенберг М.М.
  • Канахин Ю.А.
  • Марчуков Е.Ю.
  • Чепкин В.М.
RU2196239C2
СПОСОБ ОХЛАЖДЕНИЯ РАБОЧИХ ЛОПАТОК ТУРБИНЫ ДВУХКОНТУРНОГО ГАЗОТУРБИННОГО ДВИГАТЕЛЯ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ 2008
  • Некрасова Елена Сергеевна
  • Канахин Юрий Александрович
  • Марчуков Евгений Ювенальевич
RU2387846C1
ГАЗОТУРБИННЫЙ ДВИГАТЕЛЬ 2010
  • Балошко Владислав Леонидович
  • Латышев Вячеслав Георгиевич
  • Кузнецов Валерий Алексеевич
RU2439348C1
ТУРБИНА ГАЗОТУРБИННОГО ДВИГАТЕЛЯ 1998
  • Иванов В.В.
  • Кузнецов В.А.
  • Толмачев В.А.
RU2151884C1
Способ повышения ресурса газотурбинного двигателя по числу запусков 2017
  • Бадамшин Ильдар Хайдарович
RU2668590C1
ОХЛАЖДАЕМАЯ ТУРБИНА ГАЗОТУРБИННОГО ДВИГАТЕЛЯ 2001
  • Гойхенберг М.М.
  • Канахин Ю.А.
  • Марчуков Е.Ю.
RU2196233C1
СИСТЕМА УПРАВЛЕНИЯ РАСХОДОМ ВОЗДУХА, ОХЛАЖДАЮЩЕГО ТУРБИНУ ТУРБОРЕАКТИВНОГО ДВИГАТЕЛЯ 2001
  • Гойхенберг М.М.
  • Колесниченко В.Г.
  • Марчуков Е.Ю.
RU2194179C1
ТУРБОРЕАКТИВНЫЙ ДВИГАТЕЛЬ С ОБЪЕДИНЕННОЙ ОПОРОЙ ТУРБИНЫ НИЗКОГО И ВЫСОКОГО ДАВЛЕНИЯ 2009
  • Белоусов Виктор Алексеевич
  • Демкин Николай Борисович
RU2414614C1
ОХЛАЖДАЕМАЯ ТУРБИНА ГАЗОТУРБИННОГО ДВИГАТЕЛЯ 2001
  • Гойхенберг М.М.
  • Геллер В.С.
  • Канахин Ю.А.
RU2196896C1
Способ повышения ресурса газотурбинного двигателя по числу запусков 2016
  • Бадамшин Ильдар Хайдарович
RU2627490C1

Реферат патента 2000 года СПОСОБ ОХЛАЖДЕНИЯ РАБОЧЕГО КОЛЕСА ТУРБИНЫ МНОГОРЕЖИМНОГО ТУРБОРЕАКТИВНОГО ДВИГАТЕЛЯ

Изобретение относится к области охлаждения турбореактивных двигателей. Для осуществления способа при переходе двигателя на крейсерский режим наряду с уменьшением расхода охлаждающего воздуха, поступающего в коллектор, подводят газ из проточной части турбины на вход системы охлаждения рабочего колеса турбины. При этом соотношение массовых расходов газа и воздуха выбирают в пределах 0,8 - 1,6. Центробежные силы, действующие в радиальных каналах диска и каналах рабочих лопаток рабочего колеса, снижают давление на входе системы охлаждения рабочего колеса. Полученная газовоздушная смесь поступает в радиальные каналы диска и рабочих лопаток, где, во-первых, относительно "дешевая" газовоздушная смесь достаточно эффективно охлаждает элементы рабочего колеса турбины и, во-вторых, "прогревая" их относительно максимального режима работы двигателя, уменьшает радиальные зазоры между лопаткой и корпусом турбины. Кроме того, следует отметить, что скорости течения газовоздушной смеси на крейсерском режиме и течения охлаждающего воздуха на максимальном режиме в каналах диска и рабочих лопаток близки друг к другу, а значит эффективность теплообмена на крейсерском режиме увеличивается. Использование изобретения позволяет повысить КПД турбины и снизить удельные расходы топлива на крейсерских режимах. 1 ил.

Формула изобретения RU 2 159 335 C1

Способ охлаждения рабочего колеса турбины многорежимного турбореактивного двигателя, включающий подачу охлаждающего воздуха в систему охлаждения рабочего колеса и изменение его расхода по режимам работы двигателя, отличающийся тем, что на крейсерских режимах работы двигателя наряду с уменьшением расхода охлаждающего воздуха подводят газ из проточной части турбины на вход системы охлаждения рабочего колеса турбины, при этом соотношение массовых расходов газа и охлаждающего воздуха выбирают в пределах 0,8 - 1,6.

Документы, цитированные в отчете о поиске Патент 2000 года RU2159335C1

US 4807433 A, 28.02.1989
US 4217755 A, 19.08.1980
US 4275990 A, 30.01.1981
US 3663118 A, 16.05.1972
РОТОР ДВУХСТУПЕНЧАТОЙ ТУРБИНЫ 1982
  • Иванов Н.А.
  • Иванов В.В.
  • Кузнецов В.А.
  • Фадеев С.И.
  • Черняев И.А.
RU1130008C
Устройство для охлаждения ротора паровой турбины 1989
  • Шаргородский Виктор Семенович
  • Сафонов Леонид Петрович
  • Коваленко Анатолий Николаевич
  • Шилин Виктор Леонидович
  • Хоменок Леонид Арсеньевич
  • Леонова Инна Сергеевна
  • Пахомов Владимир Александрович
SU1673734A1
Устройство для охлаждения ротора паровой турбины 1988
  • Шаргородский Виктор Семенович
  • Хоменок Леонид Арсеньевич
  • Розенберг Самуил Шоломович
  • Мишкин Николай Андреевич
  • Шилин Виктор Леонидович
SU1537840A1
US 4820116 A, 11.04.1989
US 3635586 A, 18.01.1972
СПОСОБ ИЗГОТОВЛЕНИЯ ЯКОРЯ ДЛЯ ЭЛЕКТРОМАГНИТНОГО ПРЕОБРАЗОВАТЕЛЯ (ВАРИАНТЫ) 1991
  • Хао Хуанг[Cn]
  • Джин А. Фишер[Us]
RU2111598C1
US 4296599 A, 27.10.1981
СОСТАВ ДЛЯ БИО- И ОГНЕЗАЩИТЫ ДРЕВЕСИНЫ 1991
  • Галиахметов Р.Н.
  • Варфоломеев Ю.А.
  • Федоров Н.А.
  • Курбатова Н.А.
  • Бабкин В.В.
  • Коряков В.В.
  • Соколова Т.А.
  • Громова И.Н.
  • Нечаев В.Н.
  • Пигилев А.В.
RU2032531C1

RU 2 159 335 C1

Авторы

Гойхенберг М.М.

Чепкин В.М.

Даты

2000-11-20Публикация

1999-04-28Подача