СИНХРОННАЯ РЕАКТИВНАЯ МАШИНА (ВАРИАНТЫ) Российский патент 2000 года по МПК H02K55/02 H02K19/14 H02K21/46 

Описание патента на изобретение RU2159496C1

Предлагаемое изобретение относится к синхронным реактивным электрическим машинам с использованием высокотемпературных сверхпроводников (ВТСП) и может найти применение в криогенной, аэрокосмической и медицинской технике, в электроприводе транспортных систем.

Известны синхронные реактивные машины с различным конструктивным выполнением роторов [2-5]. Общими для всех конструктивных схем положительными качествами являются простота конструкции, высокая эксплуатационная надежность, связанная с отсутствием скользящих контактов, строго синхронная скорость вращения ротора. К недостаткам их относятся невысокие значения энергетических показателей (КПД и cos ϕ ), а также намного меньшие значения мощности и развиваемого момента по сравнению с мощностью и моментом асинхронного двигателя и синхронного двигателя с обмоткой возбуждения на роторе при одинаковых габаритах.

Наиболее близкой по технической сущности к предлагаемому изобретению является синхронная реактивная машина [2], содержащая статор с шихтованным сердечником, в пазах которого размещена многофазная многополюсная обмотка, цилиндрический ротор с короткозамкнутой обмоткой, состоящий из ферромагнитных элементов и немагнитных промежутков, заполненных материалами с относительной магнитной проницаемостью μ~1 (алюминий, медь и т.д.). В данной конструкции ротора, использующей разнородные по магнитным свойствам материалы, имеют место различные магнитные проводимости по продольной d и поперечной q осям. Здесь по обеим осям реализуются только ферромагнитные свойства материалов при относительной магнитной проницаемости μ≫1
Недостатком данной конструкции является то, что использование широких немагнитных промежутков, заполненных слоем меди, алюминия и т.д., снижает коэффициент заполнения ротора активным ферромагнитным материалом, что может приводить к ограничению предельных параметров машины из-за насыщения ротора. Кроме того, большие значения толщин слоев ферромагнитных элементов и немагнитных промежутков в роторе приводят к увеличению эффективного воздушного зазора, что в целом снижает энергетические параметры машины.

Целью изобретения является повышение энергетических (мощности, механического момента, коэффициента мощности и КПД) и массогабаритных показателей машины.

Цель достигается тем, что в синхронной реактивной электрической машине, содержащей статор, выполненный шихтованным, и имеющий пазы, распределенные по его внутренней поверхности, размещенную в этих пазах многофазную многополюсную обмотку и установленный на валу машины цилиндрический ротор, состоящий из ферромагнитных элементов и немагнитных промежутков и размещенной на нем короткозамкнутой обмотки, немагнитные промежутки ротора заполнены либо ленточным высокотемпературным сверхпроводниковым композитом с высокой токонесущей способностью, либо диамагнитным высокотемпературным сверхпроводниковым материалом в виде пленок, нанесенных на подложку, и выполнены в виде чередующихся с ферромагнитными элементами слоев.

Положительный эффект указанной совокупности отличительных признаков заключается в том, что в отличие от прототипа, представляющего собой синхронный реактивный двигатель с ротором, выполненным из двух разнородных по магнитным свойствам материалов (стали и алюминия, меди или пластмассы), в сверхпроводниковой синхронной реактивной электрической машине немагнитные промежутки заполнены ВТСП керамикой, величина магнитной проницаемости которой μs лежит в диапазоне от нуля (идеальный диамагнетик) до величины магнитной проницаемости воздуха μ0(0<μs0) Это позволяет реализовать различные магнитные свойства по разным направлениям: ферромагнитные свойства по оси d ротора и уникальные диамагнитные свойства по оси q. При этом коэффициент, характеризующий степень явнополюсности ротора K=xd/xq, которому пропорционален максимум мощности реактивной машины, существенно возрастает по сравнению с традиционным ротором с немагнитными промежутками из алюминия, меди, пластмассы, у которого xd/xq~5. Благодаря тому, что используемые ВТСП материалы обладают высокой токонесущей способностью, размеры немагнитных промежутков в роторе могут быть существенно снижены по сравнению с известными конструкциями реактивных электрических машин, повышается коэффициент заполнения ротора активным ферромагнитным материалом (до k3 = 0,5), что позволяет снизить опасность насыщения ротора, улучшить характеристики по продольной оси d и повысить выходные характеристики рассматриваемых машин. Использование тонких слоев ферромагнитных элементов и немагнитных промежутков позволяет существенно снизить отрицательное влияние конечного секционирования ротора на величину эффективного воздушного зазора, что повышает энергетические параметры машины. Немагнитные промежутки могут быть выполнены в двух вариантах. Первый вариант (фиг. 1) - немагнитные промежутки заполнены ленточным высокотемпературным сверхпроводниковым композитом с высокой токонесущей способностью, изготавливаемым по известной технологии "порошок в трубе" [6], с последующей прокаткой, обеспечивающей протекание незатухающих сверхпроводящих короткозамкнутых токов по сечению ленты. Ленточный ВТСП композит имеет толщину ~ 0,55 мм и представляет собой размещенную в серебряной матрице ВТСП керамику (например, висмутовая керамика Bi-Sr-Ca-Cu-O), имеющую критические токи jкр~ 130 А/мм2 и более в жидком азоте при температуре Т ~77 К. В жидком водороде (Т ~ 20 К) величина критического тока повышается до ~ 1500 А/мм2. Второй вариант (фиг. 2) - немагнитные промежутки заполнены диамагнитным высокотемпературным сверхпроводниковым материалом в виде ВТСП пленок толщиной от 40 мкм до 0,5 мм, нанесенных на подложку различными способами, например, путем ионного или магнетронного распыления, электронно-лучевого или лазерного испарения [7] . Материал подложки MgO, сапфир. Si, SrTiO3 и др.

Использование указанной совокупности признаков для реализации поставленных целей в других технических решениях авторам не известно.

На фиг. 1 и 2 показаны варианты конструктивной схемы сверхпроводниковой синхронной реактивной электрической машины, которая содержит статор 1, выполненный шихтованным и имеющий пазы, распределенные по его внутренней поверхности, в которых размещена многофазная многополюсная обмотка 2, установленный на валу машины цилиндрический ротор 3, представляющий собой сочетание ферромагнитных элементов 4 (стальных) и немагнитных промежутков 5, заполненных либо ленточным высокотемпературным сверхпроводниковым композитом (фиг. 1), представляющим собой ВТСП керамику 7, размещенную в серебряной матрице 6, либо диамагнитным высокотемпературным сверхпроводниковым материалом (фиг. 2) в виде ВТСП пленок 8 на подложке 9. Для асинхронного запуска на роторе размещена короткозамкнутая обмотка 10 (фиг. 1, 2).

Предлагаемая машина работает следующим образом.

При электромагнитном взаимодействии полюсов вращающегося магнитного поля статора и невозбужденных полюсов ротора возникает момент, который будет вращать ротор с синхронной частотой. Возникновение вращающего момента связано с существенной анизотропией магнитных свойств ротора (ВТСП + ферромагнетик). Благодаря тому, что отношение магнитных проводимостей по осям d и q в рассматриваемых машинах существенно выше (λdq~15) , чем максимально достижимые значения в традиционных синхронных реактивных машинах, где (λdq~4-5) , развиваемый вращающий момент и мощность синхронных реактивных машин с использованием ВТСП элементов в 2-3 раза больше, чем у традиционных синхронных реактивных машин.

Авторами разработаны основы теории и проектирования таких электрических машин, разработаны и изготовлены первые опытные образцы.

Предлагаемое изобретение может быть использовано в качестве синхронного реактивного двигателя в приводе насосов для перекачки криогенных жидкостей, в системах электроснабжения летательных аппаратов, в частности, самолета "Криоплан" АНТК им. Туполева, в системах криообеспечения нового медицинского оборудования, в частности томографов, в высокоскоростном наземном транспорте, в физических приборах и оборудовании.

Источники информации
1. Сверхпроводниковые электрические машины и магнитные системы: Учеб. пособие для вузов по спец. "Электромеханика" /А.И. Бертинов, Б.Л. Алиевский, К. В. Илюшин, Л.К. Ковалев, B.C. Семенихин. Под ред. Б.Л. Алиевского.- М.: Изд-во МАИ, 1993.

2. Иванов-Смоленский А.В. Электрические машины. Учебник для вузов. - М.: Энергия, 1980.

3. Голдовский Е.М. Реактивные двигатели для звукового кино. -Кинофотоиздат, 1935.

4. Ермолин Н.П. Электрические машины малой мощности. -М.: Высшая школа, 1962.

5. Williford J. W. Electric motor. United States Patent 2.939.025, C1. 310-261, 31.05.60.

6. Гуревич А.В., Минц Р.Г., Рахманов Л.Л. Физика композитных сверхпроводников. - М.: Наука, 1987.

7. Лабунов В.А., Борисенко В.Е., Воеводов Ю.Э., Грибковский В.В. Получение, свойства, применение тонких пленок керамических высокотемпературных сверхпроводников. ЦНИИ "Электроника", 1989, 57 с.

Похожие патенты RU2159496C1

название год авторы номер документа
СИНХРОННАЯ РЕАКТИВНАЯ МАШИНА 1998
  • Ковалев Л.К.
  • Илюшин К.В.
  • Полтавец В.Н.
  • Семенихин В.С.
  • Пенкин В.Т.
  • Ковалев К.Л.
  • Егошкина Л.А.
  • Ларионов А.Е.
  • Конеев С.М.-А.
RU2129329C1
СВЕРХПРОВОДНИКОВАЯ СИНХРОННАЯ МАШИНА 2001
  • Ковалев Л.К.
  • Илюшин К.В.
  • Полтавец В.Н.
  • Семенихин В.С.
  • Пенкин В.Т.
  • Ковалев К.Л.
  • Егошкина Л.А.
  • Ларионов А.Е.
  • Конеев С.М.-А.
  • Модестов К.А.
  • Ларионов С.А.
RU2180156C1
СВЕРХПРОВОДНИКОВАЯ ВЕНТИЛЬНАЯ ИНДУКТОРНАЯ МАШИНА 2001
  • Ковалев Л.К.
  • Илюшин К.В.
  • Полтавец В.Н.
  • Семенихин В.С.
  • Пенкин В.Т.
  • Ковалев К.Л.
  • Егошкина Л.А.
  • Ларионов А.Е.
  • Конеев С.М.-А.
  • Модестов К.А.
  • Ларионов С.А.
RU2178942C1
СВЕРХПРОВОДНИКОВАЯ ГИСТЕРЕЗИСНАЯ МАШИНА 1997
  • Ковалев Л.К.
  • Илюшин К.В.
  • Полтавец В.Н.
  • Семенихин В.С.
  • Пенкин В.Т.
  • Ковалев К.Л.
  • Егошкина Л.А.
RU2134478C1
СВЕРХПРОВОДНИКОВАЯ ЭЛЕКТРИЧЕСКАЯ МАШИНА 1992
  • Егошкина Л.А.
  • Илюшин К.В.
  • Ковалев Л.К.
  • Пенкин В.Т.
  • Семенихин В.С.
RU2023341C1
Сверхпроводниковая синхронная электрическая машина с обмотками якоря и возбуждения в неподвижном криостате 2017
  • Ковалев Константин Львович
  • Дубенский Александр Андреевич
  • Модестов Кирилл Андреевич
  • Иванов Николай Сергеевич
  • Пенкин Владимир Тимофеевич
  • Егошкина Людмила Александровна
  • Ларионов Анатолий Евгеньевич
RU2664716C1
Сверхпроводниковая индукторная электрическая машина с комбинированным возбуждением 2018
  • Ковалев Константин Львович
  • Ильясов Роман Ильдусович
  • Дежин Дмитрий Сергеевич
  • Егошкина Людмила Александровна
  • Ларионов Анатолий Евгеньевич
RU2696090C2
Электрическая машина с постоянными магнитами и обмотками из высокотемпературного сверхпроводникового материала 2017
  • Ковалев Константин Львович
  • Иванов Николай Сергеевич
  • Кобзева Ирина Николаевна
  • Некрасова Юлия Юрьевна
  • Егошкина Людмила Александровна
  • Ильясов Роман Ильдусович
RU2648677C1
Индукторная электрическая машина на основе высокотемпературных сверхпроводников 2018
  • Ковалев Константин Львович
  • Модестов Кирилл Андреевич
  • Кован Юрий Игоревич
  • Журавлев Сергей Владимирович
  • Егошкина Людмила Александровна
RU2689395C1
Двухпакетная индукторная электрическая машина с комбинированным возбуждением (варианты) 2018
  • Ковалев Константин Львович
  • Ильясов Роман Ильдусович
  • Кован Юрий Игоревич
  • Дежин Дмитрий Сергеевич
  • Егошкина Людмила Александровна
RU2696273C1

Иллюстрации к изобретению RU 2 159 496 C1

Реферат патента 2000 года СИНХРОННАЯ РЕАКТИВНАЯ МАШИНА (ВАРИАНТЫ)

Использование: в синхронных реактивных электрических машинах, с применением высокотемпературных сверхпроводников в криогенной, аэрокосмической и медицинской технике, в приводе перспективных транспортных систем. Машина содержит статор с шихтованным сердечником с многофазной многополюсной обмоткой, цилиндрический ротор, состоящий из ферромагнитных элементов и немагнитных промежутков и размещенной на нем короткозамкнутой обмотки. Немагнитные промежутки ротора заполнены либо ленточным высокотемпературным сверхпроводниковым композитом с высокой тонконесущей способностью, либо диамагнитным высокотемпературным сверхпроводниковым материалом в виде пленок, нанесенных на подложку. Ферромагнитные элементы и немагнитные промежутки ротора выполнены в виде чередующихся слоев. Технический результат заключается в повышении энергетических (мощность, КПД, cos α) и массогабаритных показателей машины. 2 с.п. ф-лы, 2 ил.

Формула изобретения RU 2 159 496 C1

1. Синхронная реактивная машина, содержащая статор с шихтованным сердечником, размещенную в его пазах многофазную многополюсную обмотку, цилиндрический ротор, состоящий из ферромагнитных элементов и немагнитных промежутков и размещенной на нем короткозамкнутой обмотки, отличающаяся тем, что немагнитные промежутки ротора заполнены ленточным высокотемпературным сверхпроводниковым композитом с высокой токонесущей способностью и выполнены в виде чередующихся с ферромагнитными элементами слоев. 2. Синхронная реактивная машина содержащая статор с шихтованным сердечником, размещенную в его пазах многофазную многополюсную обмотку, цилиндрический ротор, состоящий из ферромагнитных элементов и немагнитных промежутков и размещенной на нем короткозамкнутой обмотки, отличающаяся тем, что немагнитные промежутки ротора заполнены диамагнитным высокотемпературным сверхпроводниковым материалом в виде пленок, нанесенных на подложку, и выполнены в виде чередующихся с ферромагнитными элементами слоев.

Документы, цитированные в отчете о поиске Патент 2000 года RU2159496C1

СВЕРХПРОВОДНИКОВАЯ ЭЛЕКТРИЧЕСКАЯ МАШИНА 1992
  • Егошкина Л.А.
  • Илюшин К.В.
  • Ковалев Л.К.
  • Пенкин В.Т.
  • Семенихин В.С.
RU2023341C1
Ротор синхронного реактивного двигателя 1985
  • Копылов Игорь Петрович
  • Дьяченко Неля Петровна
SU1307508A1
Ротор синхронного реактивного двигателя А.В.Матвеева 1983
  • Матвеев Анатолий Васильевич
SU1117778A1
ПРИСПОСОБЛЕНИЕ ДЛЯ ГЕРМЕТИЗАЦИИ СТЫКА 0
SU338610A1
US 4110646 A, 29.08.1978
DE 3424939 A1, 17.01.1985
Конвейер 1985
  • Белик Валерий Меркурьевич
  • Климов Юрий Алексеевич
SU1305069A1
DE 3837094 A1, 08.06.1989.

RU 2 159 496 C1

Авторы

Модестов К.А.

Ларионов С.А.

Ковалев Л.К.

Илюшин К.В.

Полтавец В.Н.

Семенихин В.С.

Пенкин В.Т.

Ковалев К.Л.

Егошкина Л.А.

Ларионов А.Е.

Конеев С.М.-А.

Даты

2000-11-20Публикация

1999-03-31Подача