СПОСОБ ТЕРАПЕВТИЧЕСКОГО ВОЗДЕЙСТВИЯ УЛЬТРАЗВУКОВЫМ ПОЛЕМ НА БИОЛОГИЧЕСКИЕ ТКАНИ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ Российский патент 2000 года по МПК A61N7/00 

Описание патента на изобретение RU2160138C1

Изобретение относится главным образом к областям медицины и медицинской техники и касается методов и средств терапевтического воздействия на биологические ткани ультразвуковыми полями.

В современной медицине методы, связанные с использованием ультразвуковых полей, нашли применение в хирургической практике, диагностических исследованиях, терапевтических процедурах.

С помощью ультразвука стерилизуют жидкости, хирургический инструментарий, готовят высокодисперсные формы лекарственных препаратов.

В зависимости от характеристик ультразвуковых полей, последние могут вызывать в подвергшихся обработке системах самые разные физические эффекты - механическое разрушение, диспергирование, эмульгирование, кавитацию, тепловой нагрев, возбуждение собственных колебаний и пр. [Ультразвук. Маленькая энциклопедия /Под ред. И.П. Голяминой. М.: Советская энциклопедия. 1979. -399 с.].

При действии на биологические ткани ультразвуковых полей с разными характеристиками комплексы воздействующих физических факторов могут обусловить противовоспалительное, обезболивающее, дезинфицирующее, стимулирующее действие.

Предложено, например, для лечения мочекаменной болезни воздействовать на область проекции почек одновременно со стороны спины и живота в плоскости расположения почки противофазными ультразвуковыми полями с одной и той же частотой (1-5 кГц) и интенсивностью (2-5 мВт/см2), при этом подбор частоты и интенсивности осуществляется по субъективным ощущениям пациента.

Противофазная работа источников излучения обеспечивает не просто увеличение интенсивности колебаний, а получение ее более равномерного распределения в теле пациента при режиме бегущей волны с постоянством интенсивности воздействия внутри резонатора, образованного телом пациента [патент РФ 2099040, А 61 H 23/00, 1997 г.].

Известный способ лечения детей с хроническим пиелонефритом заключается в том, что на область почек, надпочечников и паравертебрально в зоне сегментарной иннервации надпочечников, почек, мочевыводящих путей воздействуют ультразвуковым полем частотой 880 кГц при интенсивности 0,05-0,2 Вт/см2, увеличивая интенсивность и длительность воздействий в процессе лечения в зависимости от тяжести заболевания.

При таких режимах воздействия ультразвуковыми полями достигается стабилизирующий эффект в отношении клеточных мембран почек, что позволяет сократить сроки лечения и уменьшить количество обострений [авт. свид. СССР 1456153, А 61 H 23/00, 1989 г.].

Чтобы предотвратить побочные реакции регионарной гемодинамики при проведении вибромассажа предварительно определяют 2-ю гармонику собственной частоты сердечно-сосудистой системы пациента по реографическим данным, полученным после нанесения серии вибровоздействий частотами 16-32 Гц с шагом 2 Гц, амплитудой 4 мм, длительностью 2 минуты с конечности по пику средней скорости максимального пульсового кровенаполнения, и вибровоздействие осуществляют на этой частоте [авт.свид. СССР 1163853, А 61 H 23/00, 1985 г.].

При осуществлении механических вибровоздействий для стимуляции мышц у спортсменов предварительно измеряют частоту и амплитуду механических колебаний, генерируемых напряженными мышцами, и вибровоздействие осуществляют с частотой, кратной измеренной частоте, и с амплитудой, равной измеренной амплитуде [авт.свид.СССР 1174026, А 61 H 23/00, 1985].

Описано устройство для ультразвуковой терапии, в основу функционирования которого положен принцип синхронизации ультразвукового воздействия с частотой, амплитудой и длительностью определенного биологического параметра, например кровенаполнением облучаемого участка тела. При этом информация о каком-либо биологическом параметре, например о частоте, амплитуде и длительности пульсовых колебаний, преобразуется в электрический сигнал, который после усиления и фильтрации руководит работой генератора.

Такое постоянное биоуправление и биорегулирование ультразвуковыми полями позволяет индивидуализировать и оптимизировать характер воздействия [авт. свид. СССР 562279, А 61 H 23/00, 1977 г.].

Аналогичный способ воздействия ультразвуковых полей на животные организмы предусматривает фиксацию на теле животного датчика первичной информации (например, пьезоэлектрического датчика), который через дополнительную схему управляет работой генератора ультразвуковых колебаний. В качестве первичной информации могут выступать, например, сведения, о частоте пульса. Электрический сигнал в виде синусоидальноподобной кривой, полученной с датчика первичной информации, подается на генератор ультразвуковых колебаний в качестве управляющего.

Таким образом, воздействие ультразвуковым полем осуществляют с периодичностью, равной частоте сокращений сердечно-сосудистой системы организма, что снижает поступление в организм ультразвуковой энергии, повышает эффективность воздействия, так как ткани, в первую очередь, нервная ткань, лучше реагируют на прерывистые раздражения, чем на непрерывные [авт.свид. СССР 649429, А 61 H 23/00, 1979 г.].

Запатентован ультразвуковой терапевтический аппарат, конструктивные особенности которого позволяют создавать стохастическое и широкополосное ультразвуковой поле, что имеет определенные преимущества: воздействие таких полей не вызывает привыкания и снижает побочные воздействия на окружающие патологический очаг ткани, т.к. акустическая энергия распределена в широком диапазоне частот.

Этот аппарат включает источник ультразвуковых колебаний, содержащий вариатор частоты и фазы сигнала, усилитель мощности, содержащий нормализатор амплитуды; усилитель мощности последовательно соединен с широкополосным ультразвуковым излучателем в виде многомодового объемного резонатора, поляризованным по нелинейному закону [патент РФ 2066215, А 61 N 7/00, 1996 г.]. Поскольку, эффективность воздействия ультразвуковых полей на организм определяется параметрами используемого ультразвукового поля и режимами воздействия, то выбор этих показателей имеет решающее значение. Во всех перечисленных выше известных методиках применения ультразвуковых полей параметры воздействующего поля определялись эмпирически или основывались на величинах, характеризующих деятельность сердечно-сосудистой или мышечной систем пациента. Вместе с тем, выбор параметров воздействующего ультразвукового поля по этим критериям не имеет четких биофизических обоснований и никакой уверенности в оптимальности таких параметров не имеется.

С другой стороны, заявителем впервые было установлено, что при воздействии на живую клетку ультразвуковыми полями с частотами, совпадающими с частотами собственных механических колебаний мембраны клетки, т.е. с резонансными частотами мембраны клетки, в неразрушающем мембрану гидродинамическом режиме, имеет место повышение проницаемости клеточной мембраны, связанное, по-видимому, с раскрытием так называемых "ионных каналов", через которые осуществляется транспорт в клетку и из клетки ионов и молекул субстратов и метаболитов.

Установление этого факта позволяет целенаправленно влиять на поступление в клетку необходимых ионов, энергетических субстратов и лекарственных веществ и (или) обеспечивать эвакуацию из клетки токсических веществ и(или) эндометаболитов, в зависимости от режимов ультразвукового воздействия.

В лечебной практике это явление может быть использовано для восстановления и поддержания нормальных условий полноценного функционирования живой клетки, нарушенных в результате патологических процессов.

Цель настоящего изобретения состоит в том, чтобы повысить терапевтическую эффективность воздействия ультразвуковых полей на биологические ткани.

Поставленная цель достигается за счет использования ультразвуковых полей с частотами, соответствующими частотам собственных механических колебаний клеточной мембраны (т.е. резонансным частотам), воздействие которыми осуществляют в гидродинамическом неразрушающем режиме.

Достигаемый при этом физический эффект состоит в повышении проницаемости клеточной мембраны в результате раскрытия "ионных каналов", что облегчает трансмембранный транспорт ионов и молекул.

Существо предложения заявителя состоит в следующем. На биологическую ткань, подвергшуюся патологическим изменениям, для восстановления ее нарушенных функций воздействуют ультразвуковым полем с частотой, соответствующей частоте собственных механических колебаний клеточной мембраны соответствующей ткани и осуществляют эти воздействия в неразрушающем гидродинамическом режиме.

Величины частот механических колебаний мембран клеток биологических тканей могут быть экспериментально установлены известными методами или получены известным образом рассчетным путем; могут быть привлечены доступные литературные данные.

Заявитель, например, установил, что значения низшей собственной частоты механических колебаний мембран здоровых клеток большинства мягких тканей лежат в интервале от 23 до 27 кГц., на одной из которых и производят воздействие.

Конкретные значения частот механических колебаний мембран клеток зависят от возраста клеток, их физико-химической природы, степени наблюдающихся в ней патологических изменений и от других причин.

Для осуществления предлагаемого способа частота внешнего ультразвукового поля должна соответствовать низшей собственной частоте механических колебаний клеточной мембраны. Обычно, вполне достаточно соответствия частоты ультразвукового поля лишь одной из собственных частот мембраны.

Принципиально, частота воздействующего ультразвукового поля может соответствовать любой собственной частоте колебаний клеточной мембраны, но предпочтительнее формировать наиболее низкочастотные ультразвуковые поля, при которых возбуждение колебаний мембраны требует меньших энергетических затрат. При этом частота воздействующего ультразвукового поля может быть постоянной (если точно известна частота собственных механических колебаний клеточной мембраны) или задается в некотором диапазоне значений (если частота собственных механических колебаний клеточной мембраны с достаточной точностью неизвестна) для гарантированного достижения резонансного эффекта. Другой важной характеристикой предложенного способа является интенсивность воздействующего ультразвукового поля, которая должна быть существенно ниже уровня, оказывающего разрушающее действие на клеточную мембрану.

Следовательно, интенсивность воздействующего ультразвукового поля, используемого при осуществлении предложенного способа, должна быть заведомо ниже вышесказанной величины. При этом приходится принимать во внимание то обстоятельство, что воздействующее ультразвуковое поле способно вызывать резонансные колебания клеточной мембраны, по причине чего интенсивность ультразвукового поля должна быть на несколько порядков ниже энергии разрушения клеточной мембраны.

С учетом сказанного выше оптимальная интенсивность воздействующего резонансного ультразвукового поля должна лежать в пределах от 0,2 до 0,5 мВт/см2.

Еще одним из условий осуществления предложенного способа является необходимость его реализации в гидродинамическом режиме. Последнее связано с тем, что жидкая среда, воспринимающая ультразвуковые воздействия, становится необходимым элементом способа - проникая в живую клетку, она может служить носителем ионов и веществ, которые необходимо доставить в клетку; или, эвакуируясь из клетки, может служить средой, удаляющей из клетки нежелательные ионы и вещества.

Кроме того, именно жидкая среда, которая обеспечивает гидродинамический режим ультразвукового воздействия, сама испытывает ультразвуковые воздействия, энергию которых транслирует непосредственно на биологическую ткань, вызывая соответствующие энергетические эффекты.

Являясь транслятором ультразвуковой энергии, жидкая среда, в зависимости от ее физико-химических характеристик, может ослаблять или усиливать воспринимаемую ею интенсивность ультразвукового поля.

Гидродинамический режим воздействия может обеспечиваться за счет использования в качестве жидкой среды воды, водно-солевых растворов, минеральных и растительных масел, водных суспензий или эмульсий, гелей или коллоидных систем.

Предлагаемый способ может быть использован для лечения воспалительных заболеваний кожных покровов, травматических повреждений, ожогов, в оториноларингологии, в гинекологии, в проктологии.

Для практического осуществления предлагаемого способа может быть применено устройство, содержащее генератор ультразвуковых колебаний, способный формировать ультразвуковое поле частотой 20-30 кГц, систему подачи жидкой фазы, которая обеспечивает гидродинамический режим работы устройства, и рабочий орган, создающий равномерно воздействующее на биологическую ткань однородное ультразвуковое поле.

Существенной и специфической особенностью устройства, необходимого для осуществления предложенного способа, является форма излучающей поверхности рабочего органа.

Так как терапевтическое воздействие ультразвуковыми полями, в соответствии с предложенным способом, осуществляют полями низких энергий в резонансном режиме, равномерность воздействия на всю поверхность биологической ткани имеет особое значение. Неравномерность воздействий или неоднородность воздействующего поля могут привести к тому, что на одних участках биологической ткани пониженная интенсивность поля может оказаться не способной обеспечить требуемый биологический эффект, а на других участках - повышенная интенсивность поля может вызвать достижение избыточного эффекта.

Положение усугубляется тем, что поверхности биологических тканей, на которые могут оказываться воздействия ультразвуковыми полями, имеют разную конфигурацию и кривизну, так как лечебным воздействиям могут подвергаться различные участки кожной поверхности, внутренние органы разной формы и размеров и их поверхности. Выбор формы излучающей поверхности рабочего органа, которая позволяет повысить степень равномерности воздействия, является самостоятельной творческой задачей.

Заявителем в результате проведенной исследовательской работы было показано, что удовлетворительные результаты могут быть достигнуты, если форма излучающей поверхности рабочего органа будет описана методом сплайн-аппроксимации, поскольку только и именно в этом случае может быть достигнута требуемая степень подобия излучающей и воспринимающей поверхностей.

К подобному выводу привели следующие теоретические предпосылки, подтвержденные на практике.

При полном подобии излучающей и воспринимающей поверхностей концентрация ультразвуковой энергии на каждом участке воспринимающей поверхности должна быть одинаковой.

В данном случае под понятием "подобие излучающей и воспринимающей поверхностей" подразумевается адекватность конфигурации, рельефа и кривизны этих поверхностей.

Однако такая степень подобия является идеальной, так как в реальности ее обеспечить невозможно, и на практике удовлетворительной может считаться, как было установлено в процессе собственных исследований, такая степень подобия, которая может обеспечить разброс концентраций энергии на воспринимающей поверхности в пределах 30%.

Что же касается необходимости формирования излучающей поверхности с указанной и требуемой степенью подобия воспринимающей поверхности, то реальные пути достижения этого результата не представлялись однозначными и очевидными.

Формы воспринимающей и излучающей поверхностей сложны и не могут быть описаны единой аналитической функцией.

В этой связи выбор метода аппроксимации, позволяющего описать форму излучающей поверхности с такой степенью подобия форме воспринимающей поверхности, которая обеспечит удовлетворительную равномерность поля ультразвуковой энергии, достигающего облучаемую поверхность, требовал проведения экспериментальных исследований.

В итоге было установлено, что искомый результат может быть получен при использовании только метода сплайн-аппроксимации, а применение других средств, в частности, полиномов Лагранжа или полиномов Чебышева не позволяет описать форму излучающей поверхности рабочего органа, адекватную форме обрабатываемой поверхности настолько, чтобы обеспечить необходимую степень равномерности воздействия внешнего ультразвукового поля.

Такого рода расчеты приводят к тому, что оптимальная форма излучающей поверхности должна иметь кривизну, соответствующую кривизне облучаемой поверхности.

Этот принцип оказывается справедливым для описания формы излучающей поверхности рабочего органа, предназначенного для облучения как наружных поверхностей тела, так и внутренних органов и поверхностей полых органов.

В частности, было показано, что для облучения внутренних поверхностей трубчатых органов, например прямой кишки, предпочтительна эллипсоидная форма излучающей поверхности рабочего органа и поэтому рабочий орган с эллипсоидной излучающей поверхностью может быть эффективно и успешно использоваться в проктологической практике; в гинекологии оптимально использовать рабочий орган с излучающей поверхностью, выполненной в виде цилиндра со скошенной торцевой поверхностью; в ларингологии излучающая поверхность выполнена в форме вогнутой чаши.

Этими формами, конечно, не ограничивается ассортимент рабочих органов, предназначенных для решения различных частных проблем, форма излучающих поверхностей которых может быть выполнена на основе изложенных принципов.

Предлагаемое к заявке устройство показано на прилагаемых чертежах, где на фиг. 1 представлена блок-схема предлагаемого устройства для терапевтического воздействия ультразвуковым полем на биологические ткани. Оно содержит генератор ультразвуковых колебаний 1, акустический узел 2, ультразвуковой инструмент 3. Акустический узел представляет собой одно- или двухполуволновую колебательную систему, принцип действия которой основан на магнитострикционном или пьезоэлектрическом эффектах. Ультразвуковой инструмент 3 является сменным рабочим элементом, с помощью которого осуществляется непосредственное воздействие на биологический объект 4, Предлагаемое устройство содержит также датчик резонансной частоты клеточной мембраны 5, контролер 6, компьютер 7. Информация о процессах, происходящих в зоне ультразвукового воздействия на биоткань с датчика 5 поступает на контролер 6, где преобразуется в сигнал, удобный для обработки в компьютере 7. С помощью компьютера 7 осуществляется управление процессом воздействия ультразвуковым полем на биологические ткани в автоматическом режиме. На фиг. 2 представлена структурная схема устройства ультразвукового аппарата, который содержит генератор 1, акустический узел 2, ультразвуковой инструмент 3 с рабочим окончанием 8.

На фиг. 3 и фиг. 4 представлены варианты подачи жидкости в зону воздействия.В первом варианте (фиг. 3) жидкость в зону воздействия на биологический объект поступает через канал 9, имеющийся в теле самого инструмента, во втором (фиг. 4) - с помощью специальной камеры 10, в которую помещается рабочее окончание 8. ультразвукового инструмента 3. На фиг. 5-9 представлены варианты выполнения рабочего окончания 8 ультразвукового инструмента 3. Форма рабочего окончания 8 ультразвукового инструмента 3 описывается в зависимости от вида биологической ткани, а также формы и геометрических параметров органов человека, подлежащих ультразвуковому воздействию.

Например, рабочее окончание 8 ультразвукового инструмента 3, предназначенного для обработки: полостей с малой кривизной поверхности, в том числе раневых , выполнено в форме цилиндра с плоской торцевой поверхностью 11 - (фиг, 5);
- полых органов (влагалище, матка, желудок и т.п.) выполнено в форме цилиндра со скошенной торцевой поверхностью 12 фиг.6); полостей с большой кривизной поверхности выполнено в форме цилиндра со сферической торцевой поверхностью 13 (фиг. 7);
- органов с малой кривизной поверхности выполнено в форме вогнутой чаши 14 (фиг. 8);
- трубчатых органов (кишечник и т.п.) выполнено в форме эллипсоида 15 (фиг. 9).

Предлагаемое устройство работает следующим образом. Возможны два варианта работы предлагаемого устройства. При первом варианте предлагаемое устройство работает в режиме заданной резонансной частоты клеточных мембран. В этом случае с помощью компьютера 7 выбирается диапазон технологических параметров, соответствующий параметрам определенного типа биологического объекта 4 (вид биологической ткани, геометрические характеристики биологического объекта, наличие или отсутствие патологии и т.п.). Информация о заданной резонансной частоте клеточных мембран, соответствующей данному виду биоткани, от компьютера 7 поступает в генератор 1, в котором происходит формирование электрического сигнала заданной резонансной частоты клеточных мембран. Электрический сигнал заданной резонансной частоты, сформированный в генераторе 1, по каналу электрической связи поступает в акустический узел 2, где трансформируется в механические колебания заданной частоты, которые по каналу механической связи поступают в ультразвуковой инструмент 3, где происходит окончательное формирование механических колебаний резонансной частоты до программируемого уровня интенсивности ультразвукового поля. Ультразвуковой инструмент 3 с помощью рабочего окончание воздействует на биологический объект 4 в неразрушающем мембрану гидродинамическом режиме. Информация о процессах, происходящих в зоне воздействия ультразвукового инструмента 3 на биологический объект 4, поступает на датчик 5 и далее на контролер 6, где преобразуется в сигнал, удобный для обработки в компьютере 7. В компьютере 7 на основании поступившей из зоны ультразвукового воздействия информации осуществляется корректировка режима работы ультразвукового генератора в автоматическом режиме. Форма рабочего окончания ультразвукового инструмента соответствует форме воспринимающей поверхности биологической ткани и описывается кубическими сплайнами.

При втором варианте предлагаемое устройство работает в режиме поиска резонансной частоты клеточной мембраны. В том случае, когда нет необходимой достоверной информации о биологическом объекте 4, с помощью ультразвукового аппарата осуществляется поиск резонансной частоты клеточной мембраны. С помощью компьютера 7 задается диапазон частот, который может соответствовать биологическому объекту 4. Колебания в заданном диапазоне частот формируются в генераторе 1 и по каналам связи генератор - акустический узел - ультразвуковой инструмент передаются в биологический объект 4, возбуждая механические колебания биологических структур на различных уровнях организации, включая клеточный. Информация о режиме колебаний биологических структур по каналам связи: датчик 5 - контроллер 6 - компьютер 7 поступает в компьютер 7, где осуществляется оценка соответствия режима колебаний биологических структур режиму резонансных частот клеточных структур. В автоматическом режиме поиск диапазона частот продолжается до тех пор, пока не будет найден диапазон резонансных частот клеточных мембран для данного биологического объекта 4. После определения диапазона резонансных частот предлагаемое устройство автоматически переходит на режим воздействия на биологический объект по первому варианту.

Пример практического осуществления предлагаемого способа и устройства.

Предлагаемые способ и устройство были использованы при лечении заболеваний прямой кишки, например при осложненном геморрое наружных рональных вен. При этом на слизистую оболочку прямой кишки осуществляли воздействие энергией ультразвуковых колебаний через жидкий лекарственный препарат. Манипуляцию выполняли следующим образом. При наличии тромбоза геморроидальных узлов без некроза обрабатывали операционное поле антисептическим раствором - 5% йодопироном или 70% раствором спирта. После этого заполняли устройство раствором антисептика и проводили санацию зоны узлов озвучиванием ее ультразвуковым инструментом при интенсивности поля 23 кГц в течение 30 с. Затем на обработанную поверхность наносили лекарственный препарат (мазь на гепариновой основе) и осуществляли контактное озвучивание ультразвуковым инструментом при амплитуде колебаний 40-20 мкм. Время озвучивания 30-60 с. При ультразвуковой санации прямой кишки к инструменту может быть подсоединена трубка для подачи лекарственного раствора. При использовании данной методики лечения отмечено существенное сокращение сроков лечения, в среднем в 1,5-1,9 раз при одновременном уменьшении числа рецидивов заболевания. Значительно сокращено общее количество применяемых больными антибиотиков и других лекарственных средств.

Похожие патенты RU2160138C1

название год авторы номер документа
ШИРОКОПОЛОСНЫЙ ЭЛЕКТРОМАГНИТНЫЙ РЕЗОНАТОР ДЛЯ ТЕРАПЕВТИЧЕСКОГО ВОЗДЕЙСТВИЯ НА ПАТОЛОГИЧЕСКИЕ ОЧАГИ В ТКАНЯХ ОРГАНИЗМА, МЕДИЦИНСКИЙ ПРИБОР ДЛЯ ТЕРАПЕВТИЧЕСКОГО ВОЗДЕЙСТВИЯ И СПОСОБ ТЕРАПЕВТИЧЕСКОГО ВОЗДЕЙСТВИЯ 2017
  • Шмид Александр Викторович
  • Березин Андрей Александрович
RU2757254C1
СПОСОБ НОРМАЛИЗАЦИИ БИОЛОГИЧЕСКИХ ФУНКЦИЙ ЖИВЫХ ТКАНЕЙ И УСТРОЙСТВО ДЛЯ ЭЛЕКТРОМАГНИТНОГО ВОЗДЕЙСТВИЯ НА ЖИВЫЕ ТКАНИ 2000
  • Щукин С.И.
  • Морозов А.А.
  • Зубенко В.Г.
  • Семикин Г.И.
  • Нарайкин О.С.
RU2160130C1
УСТРОЙСТВО ДЛЯ ВОЗДЕЙСТВИЯ ВОЛНОВОЙ ИНФОРМАЦИЕЙ НА МИКРООРГАНИЗМЫ 2000
RU2161516C1
УСТРОЙСТВО ДЛЯ РЕГУЛИРОВАНИЯ ФИЗИОЛОГИЧЕСКИХ ПРОЦЕССОВ В БИОЛОГИЧЕСКОМ ОБЪЕКТЕ 2007
  • Кожемякин Александр Михайлович
  • Ткаченко Юрий Александрович
RU2341851C1
УСТРОЙСТВО ДЛЯ ИНГАЛЯЦИОННОЙ КВТЧ-АКУСТОТЕРАПИИ 2004
  • Креницкий Александр Павлович
  • Майбородин Анатолий Викторович
  • Бецкий Олег Владимирович
RU2289451C2
УСТРОЙСТВО ДЛЯ МИЛЛИМЕТРОВОВОЛНОВОЙ ТЕРАПИИ 1998
  • Бессонов А.Е.
  • Конягин Б.А.
RU2127616C1
ВАКУУМНЫЙ МАССАЖЕР 2002
  • Воднев А.А.
  • Семенюк Д.А.
  • Смирнов В.Ю.
RU2237462C2
СПОСОБ ВОЗДЕЙСТВИЯ НА ОБЛАСТЬ ПАТОЛОГИЧЕСКОГО ОЧАГА ПРИ ВОСПАЛИТЕЛЬНЫХ ПРОЦЕССАХ 1998
  • Березин А.А.
  • Гарбер М.Р.
  • Березин К.А.
RU2129449C1
СПОСОБ ИНФОРМАЦИОННО-ВОЛНОВОЙ ДИАГНОСТИКИ И ТЕРАПИИ 1998
  • Бессонов А.Е.
  • Калмыкова Е.А.
  • Конягин Б.А.
RU2141785C1
ПОРТАТИВНЫЙ ИМПУЛЬСНЫЙ ПРИБОР ДЛЯ ЭЛЕКТРОТЕРАПИИ 2004
  • Кожемякин Александр Михайлович
  • Ткаченко Юрий Александрович
RU2281129C2

Иллюстрации к изобретению RU 2 160 138 C1

Реферат патента 2000 года СПОСОБ ТЕРАПЕВТИЧЕСКОГО ВОЗДЕЙСТВИЯ УЛЬТРАЗВУКОВЫМ ПОЛЕМ НА БИОЛОГИЧЕСКИЕ ТКАНИ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ

Изобретение относится к медицине и медицинской технике и касается методов и средств терапевтического воздействия на биологические ткани ультразвуковыми полями. Изобретение позволяет повысить терапевтическую эффективность воздействия ультразвуковыми полями на биологические ткани. Воздействие проводят ультразвуковыми полями с частотами, соответствующими частотам собственных механических колебаний клеточной мембраны (т.е. резонансными частотами). Воздействие на клеточные мембраны осуществляют в гидродинамическом неразрушающем режиме. Устройство для терапевтического воздействия ультразвуковым полем на биологические ткани содержит генератор ультразвуковых колебаний, акустический узел и ультразвуковой инструмент, представляющий собой сменный рабочий элемент с рабочим окончанием, и дополнительно имеет систему подачи жидкой фазы. Генератор выполнен с возможностью формирования ультразвукового поля с частотой 20-30 кГц. Форма рабочего окончания ультразвукового инструмента соответствует форме воспринимающей поверхности биологической ткани и описывается кубическими сплайнами. 2 с. и 6 з.п. ф-лы, 9 ил.

Формула изобретения RU 2 160 138 C1

1. Способ терапевтического воздействия ультразвуковым полем на биологические ткани путем передачи генерируемой ультразвуковой энергии в зону воздействия, отличающийся тем, что воздействие осуществляют ультразвуковым полем с частотой, соответствующей одной из собственных механических частот клеточной мембраны, в неразрушающем мембрану гидродинамическом режиме. 2. Способ по п.1, отличающийся тем, что воздействие осуществляют ультразвуковым полем с частотой 23 - 27 кГц и интенсивностью 0,2 - 0,5 мВт/см2. 3. Устройство для терапевтического воздействия ультразвуковым полем на биологические ткани, содержащее генератор ультразвуковых колебаний, акустический узел и ультразвуковой инструмент, представляющий собой сменный рабочий элемент с рабочим окончанием, отличающееся тем, что дополнительно содержит систему подачи жидкой фазы, а генератор выполнен с возможностью формирования ультразвукового поля с частотой 20 - 30 кГц и, при этом форма рабочего окончания ультразвукового инструмента соответствует форме воспринимающей поверхности биологической ткани и описывается кубическими сплайнами. 4. Устройство по п.3, отличающееся тем, что рабочее окончание ультразвукового инструмента, предназначенного для обработки трубчатых органов выполнено в форме эллипсоида. 5. Устройство по п.3, отличающееся тем, что рабочее окончание ультразвукового инструмента, предназначенного для обработки полых органов, выполнено в форме цилиндра со скошенной торцевой поверхностью. 6. Устройство по п.3, отличающееся тем, что рабочее окончание ультразвукового инструмента, предназначенного для обработки органов, и имеющих малую кривизну, выполнено в форме вогнутой чаши. 7. Устройство по п.3, отличающееся тем, что рабочее окончание ультразвукового инструмента, предназначенного для обработки полостей, имеющих малую кривизну поверхности, выполнено в форме цилиндра с плоской торцевой поверхностью. 8. Устройство по п.3, отличающееся тем, что рабочее окончание ультразвукового инструмента, предназначенного для обработки полостей, имеющих большую кривизну поверхности, выполнено в форме цилиндра со сферической торцевой поверхностью.

Документы, цитированные в отчете о поиске Патент 2000 года RU2160138C1

RU 2066215 С1, 10.09.1996
СПОСОБ ПОДАВЛЕНИЯ ОПУХОЛЕЙ 1996
  • Андриянов Ю.В.
  • Андриянова О.Н.
  • Багаудинов К.Г.
  • Гарилевич Б.А.
  • Смирнов В.П.
RU2127615C1
Способ реабилитации функциональных расстройств у больных с сердечно-сосудистыми заболеваниями 1989
  • Пономарева Валентина Васильевна
  • Балашова Елена Григорьевна
  • Аслибекян Ивиста Суреновна
  • Иванова Любовь Николаевна
  • Нестеренко Галина Петровна
  • Образовский Николай Дмитриевич
SU1731217A1

RU 2 160 138 C1

Авторы

Нарайкин О.С.

Саврасов Г.В.

Даты

2000-12-10Публикация

2000-07-10Подача