Изобретение относится к получению оксидов химических элементов, в частности оксида мышьяка, путем переработки мышьяксодержащих отходов, преимущественно образующихся при переработке руд цветных металлов.
Одним из видов твердых отходов производств являются отработанные металлургические шламы (пылевидные отходы гидрометаллургических производств). Как правило, они содержат в своем составе достаточно большие количества мышьяксодержащих соединений. Вывоз таких шламов на свалки существенно влияет на экологическую обстановку в регионах с наличием металлургических предприятий. Между тем шламы могут подвергаться вторичной переработке с получением оксида мышьяка и концентрата черных и редких металлов (молибден, вольфрам и т. д. ). Применение отходов в качестве сырьевой базы позволяет ликвидировать дефицит в мышьяке и его соединениях, необходимых в металлургии, медицине, электронике и других отраслях народного хозяйства. Концентрат черных и цветных металлов возвращается в качестве легирующих добавок в сталелитейную промышленность. И, наконец, переработка шламов улучшает экологическую обстановку в районах металлургических комбинатов.
Известен способ получения оксида мышьяка сжиганием в водородно-кислородном пламени β-хлорвинилдихлорарсина (люизита), являющегося боевым отравляющим веществом (см. патент РФ N 2046758, кл. МПК С 01 G 28/00).
Основными недостатками данного способа являются, во-первых, то, что в процессе получения оксида мышьяка по этому методу обслуживающий персонал производства должен использовать специальные средства, защищающие органы дыхания и кожи от контакта с отравляющим веществом, во-вторых, существует ограниченная сырьевая база - запасы люизита, в-третьих, при сжигании β-хлорвинилдихлорарсина образуются в большом количестве жидкие отходы (водные растворы хлоридов, оксихлоридов и карбонатов щелочных металлов), которые необходимо в дальнейшем подвергать переработке при утилизации.
Известен также способ получения белого мышьяка (cм. a.c. СССР N 1435541, МПК С 01 G 28/02) и мышьякосодержащих отходов, заключающийся в том, что исходное сырье смешивают с углеродом в соотношении 4-6:1 и проводят обжиг шихты при 700oC в присутствии кислорода воздуха.
Недостатками данного способа являются необходимость предварительной подготовки шихты путем смешивания исходного сырья с углеродом, а также периодичность проведения процесса.
Наиболее близким к предлагаемому изобретению является способ получения оксида мышьяка, включающий окислительный обжиг при 700-900oC загруженных в реактор сернистых соединений мышьяка с получением трехокиси мышьяка (As2O3), которая при обжиге получается в виде пара, и, возгоняясь, конденсируeтся в улавливательных системах (cм. книгу Рцхиладзе В.Г. Мышьяк.- М.: Металлургия, 1969, c. 36-40).
Основным недостатком является периодичность процесса.
Задачей изобретения является обеспечение непрерывности проведения получения оксида мышьяка.
Поставленная задача решается тем, что в способе получения оксида мышьяка из мышьяксодержащих материалов, включающем загрузку сырья в реактор, его обжиг при температуре выше 400oC с последующей конденсацией целевого продукта, процесс загрузки осуществляют в непрерывном режиме дозатором в зону нагрева.
Кроме того, температуру в зоне нагрева поддерживают в интервале 400-850oC, а обжиг проводят при остаточном давлении 150-500 мм рт. ст.
Изобретение поясняется чертежом, на котором приведена схема установки, обеспечивающей непрерывное получение оксида мышьяка из шлама металлургических производств, где:
1 - электродвигатель;
2 - бункер для шлама;
3 - шлам мышьяксодержащих отходов металлургических производств;
4 - шнек;
5 - реактор;
6 - нагревательные элементы;
7 - высокотемпературная зона;
8 - перфорированная труба;
9 - сборник отработанного шлама;
10 - конденсатор;
11 - к вакуумной линии;
12 - сборник оксида мышьяка.
Последовательность операций по получению оксида мышьяка из шламов металлургических производств в установке непрерывным методом состоит в следующем. Мышьяксодержащий шлам загружают в бункер 2, в рабочей высокотемпературной зоне установки (зоне нагрева) 7 создают нужную температуру с помощью нагревательных элементов 6. По достижении в рабочей зоне необходимой температуры включают требуемый вакуум, запитываясь от вакуумной линии 11, и начинают подачу шлама с помощью дозатора в виде шнека 4, работающего от электродвигателя 1, в высокотемпературную зону установки. Проходя высокотемпературную зону нагрева, шлам подвергается обжигу, во время которого выделяющийся оксид мышьяка через перфорированные отверстия трубы 8 отводится в конденсатор 10, где происходит конденсация аэрозоля оксида и его сбрасывание в сборник 12. Отработанный шлам, прошедший высокотемпературную зону установки, собирается в сборнике 9. Подачу исходного шлама в бункер установки осуществляют непрерывно.
Пример 1. За 1 ч работы установки при использовании в качестве исходного сырья шлама металлургического производства, содержащего 47,5% оксида мышьяка и режимах проведения процесса: температура рабочей зоны - 400oC; вакуум - 150 мм рт. ст. получено 564,3 г оксида мышьяка, содержащего 98,77% основного вещества, и 632,6 г отработанного шлама с содержанием оксида мышьяка 1,75%. Степень извлечения оксида мышьяка 96,3%.
Пример 2. За 1 ч работы установки по примеру 1 и режимах проведения процесса: температура рабочей зоны - 600oC; вакуум - 320 мм рт. ст. получено 693,4 г оксида мышьяка, содержащего 98,56% основного вещества, и 776,9 г отработанного шлама с остаточным содержанием оксида мышьяка 1,98%. Степень извлечения оксида мышьяка 96,0%.
Пример 3. По примеру 1 за 1 ч работы установки и режимах проведения процесса: температура рабочей зоны - 850oC; вакуум - 500 мм рт. ст. получено 834,5 г оксида мышьяка, содержащего 97,44% основного вещества, и 919,3 г отработанного шлама с остаточным содержанием оксида мышьяка 2,14%. Степень извлечения оксида мышьяка 95,5%.
В таблице приведена зависимость степени извлечения из шлама оксида мышьяка и содержания основного вещества в нем от режимов проведения процесса: температуры рабочей зоны и остаточного давления в установке.
Из данных таблицы следует, что понижение температуры рабочей зоны установки ниже 400oC приводит к резкому падению степени извлечения оксида мышьяка из шламов, что объясняется низким давлением паров As2O3 при температурах ниже 400oC. Верхний предел в 850oC объясняется тем, что при рабочих температурах в установке более 850oC наблюдается процесс плавления отработанных шлаков, что приводит к остановке шнека и поломке электродвигателя.
Понижение остаточного давления ниже 150 мм рт. ст. уменьшает выход оксида мышьяка вследствие значительного уноса аэрозоля продукта в вакуумную линию. Понижение вакуума выше 500 мм рт. ст. также снижает степень извлечения оксида мышьяка из шлаков, что объясняется низкой эффективностью захвата и направления аэрозоля продукта из высокотемпературной зоны установки в конденсатор.
Изобретение позволяет получать оксид мышьяка по непрерывному методу из шламов мышьяксодержащих отходов производств со степенью извлечения 94,7-99,4%.
Способ непрерывного проведения процесса получения оксида мышьяка позволяет в сравнении с периодической технологией уменьшить трудозатраты, связанные с загрузкой исходного сырья, выгрузкой отработанного шлама, ликвидировать потери времени на разогрев реактора периодического действия и его остывание для следующей загрузки. В целом это приводит к повышению производительности процесса получения оксида мышьяка из мышьяксодержащих материалов и снижению энергоемкости технологии.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПЕРЕРАБОТКИ ПРОДУКТОВ ДЕТОКСИКАЦИИ ЛЮИЗИТА | 2001 |
|
RU2198707C1 |
СПОСОБ ПОЛУЧЕНИЯ ОКСИДА МЫШЬЯКА ОСОБОЙ ЧИСТОТЫ | 2001 |
|
RU2232719C2 |
СПОСОБ ПЕРЕРАБОТКИ РЕАКЦИОННЫХ МАСС, ОБРАЗУЮЩИХСЯ В ПРОЦЕССЕ ДЕТОКСИКАЦИИ ЛЮИЗИТА | 2001 |
|
RU2192297C1 |
СПОСОБ ПОВЫШЕНИЯ ПРОДУКТИВНОСТИ СКВАЖИН | 2001 |
|
RU2188933C1 |
СПОСОБ ПОЛУЧЕНИЯ ЭЛЕМЕНТНОГО МЫШЬЯКА И ХЛОРИДА НАТРИЯ ИЗ ПРОДУКТОВ ЩЕЛОЧНОГО ГИДРОЛИЗА ЛЮИЗИТА | 2009 |
|
RU2412734C2 |
СПОСОБ ПОЛУЧЕНИЯ ГИДРОФОБНОГО ДИСПЕРСНОГО МАТЕРИАЛА | 2001 |
|
RU2188215C1 |
СПОСОБ ЗАХОРОНЕНИЯ РАДИОАКТИВНЫХ И ДРУГИХ ТОКСИЧНЫХ ЖИДКИХ ОТХОДОВ | 2000 |
|
RU2173490C1 |
УСТРОЙСТВО ДЛЯ ОБРАБОТКИ ЖИДКОСТИ МАГНИТНЫМ ПОЛЕМ | 2001 |
|
RU2182888C1 |
УСТРОЙСТВО ДЛЯ МАГНИТНОЙ ОБРАБОТКИ ЖИДКОСТИ | 2001 |
|
RU2192389C1 |
Способ переработки мышьяксодержащих отходов | 1982 |
|
SU1043178A1 |
Изобретение может быть использовано для получения оксидов химических элементов, в частности оксида мышьяка, путем переработки мышьяксодержащих отходов, преимущественно образующихся при переработке руд цветных металлов. Способ получения оксида мышьяка из мышьяксодержащих материалов включает загрузку сырья в реактор, его обжиг при температуре выше 400oC и давлении менее 1 атм с последующей конденсацией целевого продукта. Процесс загрузки в способе осуществляют в непрерывном режиме дозатором в зону нагрева, температуру в зоне нагрева поддерживают в интервале 400-850oC, а обжиг проводят при остаточном давлении 150-500 мм рт. ст. Обеспечивается непрерывное проведение процесса. 1 з.п. ф-лы, 1 ил., 1 табл.
РЦХИЛАДЗЕ В.Г | |||
Мышьяк | |||
- М.: Металлургия, 1969, с.35 и 36 | |||
СПОСОБ ПОЛУЧЕНИЯ ОКСИДА МЫШЬЯКА | 1992 |
|
RU2046758C1 |
US 4401632, 30.08.1983 | |||
Горный компас | 0 |
|
SU81A1 |
Авторы
Даты
2001-03-10—Публикация
2000-02-24—Подача