СПОСОБ ВИЗУАЛИЗАЦИИ АРТЕРИЙ НИЖНИХ КОНЕЧНОСТЕЙ МЕТОДОМ МАГНИТНО-РЕЗОНАНСНОЙ АНГИОГРАФИИ Российский патент 2001 года по МПК A61B5/05 

Описание патента на изобретение RU2166909C1

Изобретение относится к медицине, а именно исследованию состояния кровеносных сосудов с помощью магнитного резонанса и может быть использовано при визуализации артерий нижних конечностей.

Диагностические возможности рентгеноконтрастной ангиографии при визуализации артерий подколенно-берцового сегмента у больных с атеросклеротическими окклюзиями сосудов нижних конечностей, особенно с поражением вышерасположенных артериальных сегментов, достаточно ограничены. [[Гусак В.К., Пшеничный В. Н., Миминошвили О.И., Иваненко А.А. Особенности хирургического лечения критической ишемии нижних конечностей // Актуал. проблемы панкреатогепатобилиарной и сосуд, хирургии. - Киев., 1998.-С. 206-207.; Белов Ю.В., Сандриков В.А., Косенков А.Н. и др. Хирургическое лечение больных с хронической критической ишемией нижних конечностей атеросклеротической этиологии // Хирургия. -1997.- N 2.- С. 45-51.; Буров Ю.А, Москаленко А.Н. и др. Хирургическое лечение больных с критической ишемией нижних конечностей атеросклеротического генеза // Вестн, хирургии. - 1999. -N4. - С. 42-44].

Альтернативное рентгеноконтрастному исследованию дуплексное сканирование артерий в режиме цветового и энергетического допплеровского картирования также имеет ряд недостатков: трудности в ультразвуковой локации глубокозалегающих артерий и артерий, меняющих направление своего расположения, невозможность визуализации сосудов на большом протяжении, низкая чувствительность к малым скоростям кровотока, длительность исследования. [Me Carthy M.J., Nydahl S. , Hartshorne Т. et al. Colour-coded duplex imaging and dependent Doppler ultrasonography in the assessment of cruropedal vessels // Br. J. Surg. -1999.- Vol. 86, N 1.- P. 33-37.; Elsman B.H., Eikelboom B.C., Legemate D. A. , Meyer R. Colour duplex scanning for lower extremity arterial disease // Ангиол. и сос. хирургия. -1996.- N 1.- С. 20-31.; Hatsukami Т.S., Primozich J. F., Zierler R.E. et al. Color Doppler imaging of infrainguinal arterial occlusive disease // J. Vase. Surg-1992.- Vol. 16.- P. 527-533].

В последние годы активно развиваются исследования по использованию магнитно-резонансной ангиографии (МРА) при визуализации артерий нижних конечностей. Принцип магнитной ангиографии заключается в том, что движущаяся кровь в сосудах обладает иными магнитными свойствами, чем неподвижные ткани и является естественным контрастом [Беленков Ю.Н., Терновой С.К., Синицын В.Е. Магнитно-резонансная томография сердца и сосудов. - М., 1997.; Masarik Т.J., Lewin J.S., Laub J. Magnetic Resonance Angiography // Stark D.D., Beadley W. G. Magnetic Resonance Imaging. - St. Louis, Mosby Year Book. -1992.- P. 299-334.]
Преимуществами МРА являются неинвазивность, отсутствие необходимости введения в организм контрастного препарата, возможность получения изображения артерий на значительном протяжении, низкая себестоимость и быстрота исследования [Cortell E.D., Kaufman J.A., Geller S.C. et al. MR-angiography of tibial runoff vessels: imaging with head coil compared with conventional arteriography// Am. J. Radiol. -1996.- Vol. 167.- P. 147-151.; Polak I.F., Bajakian R. L. , O'Leary D.H. et al. Detection of internal carotid artery stenosis: comparison of MR-angiography, color Doppler sonography and arteriography // Radiology. -1992.- Vol. 182.- P. 35-40].

Тем не менее, опыт проведения МРА при окклюзиях магистральных артерий нижних конечностей свидетельствует о недостаточной специфичности и невысоком качестве получаемых изображений артерий голени. Это связано с определенными сложностями в визуализации артерий малого диаметра из-за низкой скорости кровотока и турбулентного потока крови [Синицын В.Е., Тимонина Е.А., Стукалова О. В. Магнитно-резонансная ангиография - сегодняшний уровень развития и новые возможности // Медицинская визуализация. -1996.- N4.- С. 36-44.].

Ключевым вопросом в методике МРА является выбор оптимальных значений параметров проведения исследования: времени повторения сигнала (TR), времени эхо (ТЕ), угла наклона (FA), числа усредненных сигналов и определенной толщины среза [Беленков Ю. Н., Терновой С.К., Синицын В.Е. Магнитно-резонансная томография сердца и сосудов. - М., 1997.].

Известна стандартная методика проведения МРА нижних конечностей с импульсной последовательностью TOP (time-of-flight), в соответствие с которой рекомендуются значения времени повторения сигнала (TR), равном 20-40 мс, времени ЭХО (ТЕ) 1-12 мс, угла наклона (FA) 20-40o, числа усредненных сигналов 1, толщины среза 5 мм. [Беленков Ю.Н., Терновой С.К., Синицын В.Е., Магнитно-резонансная томография сердца и сосудов. - М., 1997].

Методика в недостаточной степени учитывает характер кровотока в артериях голени при окклюзионном поражении вышерасположенных артериальных сегментов.

Наиболее близким к заявляемому является способ оценки стенотических и окклюзионных поражений артерий нижних конечностей у пациентов с перемежающейся хромотой с применением МРА [Тимонина Е.А., Синицын В.Е., Ширяев А.А. и др. Применение магнитно-резонансной ангиографии для оценки стенотических и окклюзионных поражений артерий нижних конечностей у пациентов с перемежающейся хромотой // Кардиология. -1999.- N 1.- С. 14-19].

Для выполнения МРА авторами использованы следующие параметры: TR, равное 29 мс, ТЕ - 6,7 мс, угол наклона 40o, поле изображения 320 мм, эффективная толщина среза - 2 мм (толщина 5 мм, перекрытие - 3 мм), матрица 256х128 элементов, количество усредненных сигналов - 1, количество получаемых срезов 54х2. Пресатурация имела поперечную ориентацию, располагаясь на 15-20 мм ниже визуализируемой области. Реконструкцию полученных изображений производили с помощью метода проекций максимальной интенсивности (МIP) с шагом 20o (10 изображений).

Недостатками способа являются низкое качество и недостаточная яркость визуализации сосудов, а зачастую и полное отсутствие изображений артерий голени, многочисленные помехи от окружающей ткани, причина которых заключается в использовании не совсем оптимальных параметров импульсной последовательности.

Техническим результатом изобретения является повышение интенсивности и качества изображения артерий голени и снижение помех при их визуализации.

Технический результат достигается тем, что визуализацию артерий нижних конечностей с помощью магнитного резонанса осуществляют в импульсной последовательности при величинах TR для аорты и бедренных артерий 24 мс, для артерий голени - 25 мс, ТЕ - 6,9 мс, FA - 60o, толщины среза 4 мм, количества усредненных сигналов 2.

По отношению к прототипу заявляемый способ имеет следующие отличительные признаки.

Уменьшением TR для аорты и бедренных артерий до 24 мс и для артерий голени до 25 мс достигается лучшее подавление сигнала от окружающих тканей.

Использование ТЕ кратным 6,9 мс позволяет достичь более качественного изображения движущейся крови в сосуде, так как известно, что при ТЕ, кратном 6,9, сигналы воды и жира находятся в одной фазе.

Увеличение FA до 60o способствует повышению интенсивности изображения.

Уменьшение толщины среза до 4 мм упрощает достижение полного обновления крови в сканируемом срезе.

Увеличение количества усредненных сигналов до 2 позволяет уменьшить количество артефактов при получении изображения.

Заявляемый способ осуществляется следующим образом, а возможность практического использования иллюстрируется примером его конкретного применения.

Пример 1. Больной К. , 56 лет, поступил с жалобами на боли в покое в правой стопе. При осмотре пульсация на бедренных артериях и ниже не определяется. Через сутки выполнена магнитно-резонансная ангиография на магнитно-резонансном томографе Gyroscan T5-NT со сверхпроводящим магнитом (напряженность магнитного поля 0,5 Тл, резонансная частота - 21,7 МГц) и встроенной катушкой для тела (для аорты и бедренных артерий), а для артерий подколенно-берцового сегмента дополнительно применена гибкая поверхностная прямоугольная катушка R-1 110х400 мм. Использована импульсная последовательность "inflow " со следующими параметрами: TR для аорты и бедренных артерий = 24 мс, для артерий голени = 25 мс; ТЕ = 6,9 мс; угол наклона - 60o ; поле изображения для аорты и артерий бедра -330 мм, для артерий голени - 250 мм; эффективная толщина среза - 2 мм (толщина - 4 мм, перекрытие - 2 мм); матрица 256х256 элементов, количество усредненных сигналов - 2; количество полученных срезов для аорты - 200, бедренных артерий - 200, артерий голени - 160. Для подавления сигнала от венозного кровотока использована область преднасыщения сигнала (пресатурация) толщиной 50 мм. Пресатурация имела поперечную ориентацию, располагаясь на 15-20 мм ниже визуализируемой области. Реконструкция полученных изображений произведена с помощью метода проекций максимальной интенсивности (МIP) с шагом от 8 до 20o (10 изображений). Время сканирования аорты и артерий конечностей составило 47 минут. На полученных снимках - высокая окклюзия брюшной аорты, подвздошных артерий, бедренная, подколенная и берцовые артерии слева проходимы и прослеживаются до стопы, справа - имеется окклюзия поверхностной бедренной артерии на всем протяжении, подколенная артерия и артерии голени прослеживаются до периферии. Больной оперирован, интраоперационно диагноз полностью подтвержден. Данные послеоперационного дуплексного исследования артерий голени: все артерии голени визуализированы на всем протяжении, регистрируется неизмененный магистральный кровоток.

Предлагаемый метод применен у 44 больных атеросклерозом артерий нижних конечностей. МРА-критерии окклюзионного поражения артерий: отсутствие визуализации просвета, сужение просвета с постстенотическим расширением, изъеденность внутреннего контура артерии. Плотность прокрашивания просвета диагностического значения не имела ввиду значительной зависимости интенсивности сигнала от турбулентности потока крови. В качестве референсных тестов, подтверждающих наличие или отсутствие поражения артерий голени, были использованы до- и послеоперационные данные дуплексного сканирования в режиме ЦДК (цветового допплеровского картирования) и ЭДК (энергетического допплеровского кодирования) на аппарате Aloka-2000 (Япония), а также данные прямой интраоперационной ревизии берцовых артерий. Проксимальная граница окклюзионного процесса локализовалась в подколенно-берцовом сегменте (данные референтных тестов) у 16, в бедренно-подколенном сегменте - у 14. У 14 пациентов наблюдались сочетанные окклюзии аорто-бедренного и бедренно-подколенного сегментов (табл. 1.)
Общая частота окклюзионного поражения берцовых артерий по данным референсных тестов в группе больных, которым выполнена МРА, составила 53%. Число истинно-положительных, ложно-отрицательных, истинно-отрицательных и ложно-положительных результатов МРА представлено в табл. 2.

Основные диагностические характеристики предложенной методики МРА (чувствительность, специфичность, отношение правдоподобия положительного и отрицательного результатов) в зависимости от проксимальной границы окклюзионного поражения приведены в табл. 3.

Следует заметить, что качество изображения, получаемое при магнитно-резонансой ангиографии, не уступало качеству рентгенконтрастных ангиограмм в случае успешной визуализации артерий голени на последних.

Таким образом, предложенная методика магнитно-резонансной ангиографии является высокодостоверным методом диагностики окклюзий артерий голени. Чувствительность и специфичность метода мало зависят от наличия или отсутствия поражения вышележащих артериальных сегментов. Качество получаемых при этом изображений не уступает снимкам, выполненным при проведении рентгенконтрастной ангиографии.

Похожие патенты RU2166909C1

название год авторы номер документа
СПОСОБ АНГИОГРАФИЧЕСКОГО КОНТРАСТИРОВАНИЯ АРТЕРИЙ НИЖНИХ КОНЕЧНОСТЕЙ 2000
  • Вырвыхвост А.В.
  • Восканян Ю.Э.
  • Вафин А.З.
  • Кузнецов О.Г.
  • Калугин К.Ю.
  • Таций Ю.П.
  • Фоменко А.А.
  • Колесников В.Н.
  • Малышева Ф.А.
  • Чемурзиев Р.А.
RU2191038C2
СПОСОБ ФОРМИРОВАНИЯ АРТЕРИОВЕНОЗНОЙ ФИСТУЛЫ ПРИ БЕРЦОВОМ И ПЛАНТАРНОМ ШУНТИРОВАНИЯХ 2000
  • Восканян Ю.Э.
  • Вырвыхвост А.В.
  • Вафин А.З.
  • Таций Ю.П.
  • Фоменко А.А.
  • Кузнецов О.Г.
  • Калугин К.Ю.
  • Малышева Ф.А.
  • Чемурзиев Р.А.
RU2167610C1
СПОСОБ ОЦЕНКИ СОСТОЯТЕЛЬНОСТИ РУСЛА ОТТОКА ПРИ БЕДРЕННО-ПОДКОЛЕННОМ ШУНТИРОВАНИИ В ИЗОЛИРОВАННЫЙ СЕГМЕНТ У БОЛЬНЫХ С КРИТИЧЕСКОЙ ИШЕМИЕЙ 2014
  • Казаков Юрий Иванович
  • Лукин Илья Борисович
RU2545419C1
Способ лечения хронических окклюзий магистральных артерий 2020
  • Майстренко Дмитрий Николаевич
  • Гранов Дмитрий Анатольевич
  • Генералов Михаил Игоревич
  • Кокорин Денис Михайлович
  • Станжевский Андрей Алексеевич
  • Молчанов Олег Евгеньевич
  • Иванов Александр Сергеевич
  • Олещук Анна Никитична
  • Попов Сергей Александрович
  • Майстренко Алексей Дмитриевич
  • Николаев Дмитрий Николаевич
  • Моисеенко Владислав Евгеньевич
  • Стаценко Андрей Анатольевич
RU2737579C1
СПОСОБ ВЫБОРА ТАКТИКИ ХИРУРГИЧЕСКОГО ЛЕЧЕНИЯ БОЛЬНЫХ С ОБЛИТЕРИРУЮЩИМ АТЕРОСКЛЕРОЗОМ АРТЕРИЙ НИЖНИХ КОНЕЧНОСТЕЙ 2020
  • Пуздряк Петр Дмитриевич
  • Смирнов Антон Евгеньевич
  • Шломин Владимир Владимирович
  • Косицина Инга Михайловна
  • Иванов Михаил Анатольевич
  • Бондаренко Павел Борисович
  • Самко Кристина Витальевна
  • Петрова Ксения Александровна
  • Комиссаров Кирилл Александрович
  • Колчинский Иннокентий Андреевич
RU2756422C1
СПОСОБ ОПРЕДЕЛЕНИЯ ЦЕЛЕВОЙ АРТЕРИИ ДЛЯ ХИРУРГИЧЕСКОЙ РЕВАСКУЛЯРИЗАЦИИ БОЛЬНЫХ С КРИТИЧЕСКОЙ ИШЕМИЕЙ НИЖНИХ КОНЕЧНОСТЕЙ 2017
  • Кудыкин Максим Николаевич
  • Шейко Геннадий Евгеньевич
  • Белова Анна Наумовна
  • Лоскутова Наталья Васильевна
  • Дерябин Роман Александрович
  • Васягин Андрей Николаевич
  • Целоусова Лада Максимовна
RU2654415C1
СПОСОБ ПЛАСТИКИ ТИБИОПЕРОНЕАЛЬНОГО СТВОЛА ПРИ АУТОВЕНОЗНОМ БЕДРЕННО-ПОДКОЛЕННОМ ШУНТИРОВАНИИ 2016
  • Крепкогорский Николай Всеволодович
RU2620002C2
СПОСОБ БЕДРЕННО-ДИСТАЛЬНОГО ПРОТЕЗИРОВАНИЯ ПОДКОЛЕННОЙ АРТЕРИИ АУТОВЕНОЙ 2013
  • Крепкогорский Николай Всеволодович
  • Игнатьев Игорь Михайлович
RU2545439C2
СПОСОБ БЕДРЕННО-МУЛЬТИБЕРЦОВОГО ШУНТИРОВАНИЯ С АРТЕРИАЛИЗАЦИЕЙ ВЕНОЗНОГО КРОВОТОКА СТОПЫ 2016
  • Крепкогорский Николай Всеволодович
RU2632537C2
Способ эндоваскулярной имплантации аутовенозного трансплантата 2017
  • Гайдуков Алексей Владимирович
  • Иванов Алексей Викторович
  • Крашонкин Андрей Андреевич
RU2666514C1

Иллюстрации к изобретению RU 2 166 909 C1

Реферат патента 2001 года СПОСОБ ВИЗУАЛИЗАЦИИ АРТЕРИЙ НИЖНИХ КОНЕЧНОСТЕЙ МЕТОДОМ МАГНИТНО-РЕЗОНАНСНОЙ АНГИОГРАФИИ

Способ может быть использован в медицине, а именно в ангиографии. Визуализацию артерий нижних конечностей осуществляют в импульсной последовательности при величинах времени повторения сигнала, равном 24 мс, для артерий голени 25 мс, времени эхо 6,9 мс, угла наклона 60, толщины среза 4 мм, количества усредненных сигналов 2. Способ позволяет повысить интенсивность и качество изображения. 3 табл.

Формула изобретения RU 2 166 909 C1

Способ визуализации артерий нижних конечностей с помощью магнитного резонанса с импульсной последовательностью воздействия на артерии при заданных величинах времени повторения сигнала, времени эхо, угла наклона, числа усредненных сигналов и толщины среза, отличающийся тем, что импульсную последовательность осуществляют при величинах времени повторения сигнала для аорты и бедренных артерий, равном 24 мс, для артерий голени 25 мс, времени эхо 6,9 мс, угла наклона 60, толщины среза 4 мм, количества усредненных сигналов 2.

Документы, цитированные в отчете о поиске Патент 2001 года RU2166909C1

Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
Тимонина Е.А
и др
Применение магнитно-резонансной ангиографии для оценки стенотических и окклюзионных поражений артерий нижних конечностей у пациентов с перемежающейся хромотой
Кардиология, 1999, N 1, с.14-19
Аппарат для очищения воды при помощи химических реактивов 1917
  • Гордон И.Д.
SU2A1
СПОСОБ ОПРЕДЕЛЕНИЯ ВАСКУЛЯРИЗАЦИИ ОЧАГОВЫХ ПОРАЖЕНИЙ ПЕЧЕНИ 1999
  • Гранов А.М.
  • Тютин Л.А.
  • Фадеев Н.П.
  • Сухов В.Ю.
  • Дубровина Т.С.
RU2156112C1
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. 1921
  • Богач Б.И.
SU3A1
СПОСОБ ПРИЖИЗНЕННОЙ СИСТЕМНОЙ КОМПЬЮТЕРНОЙ ВИЗУАЛИЗАЦИИ ОРГАННОГО СОСУДИСТОГО РУСЛА 1998
  • Каган И.И.
  • Ким В.И.
  • Левошко Л.И.
  • Чемезов С.В.
  • Железнов Л.М.
  • Ким А.В.
  • Демин В.В.
RU2134065C1
Очаг для массовой варки пищи, выпечки хлеба и кипячения воды 1921
  • Богач Б.И.
SU4A1
СПОСОБ ОПРЕДЕЛЕНИЯ ВЯЗКОСТИ КРОВИ 1997
  • Царев О.А.
RU2125265C1

RU 2 166 909 C1

Авторы

Восканян Ю.Э.

Вырвыхвост А.В.

Вафин А.З.

Калугин К.Ю.

Кузнецов О.Г.

Таций Ю.П.

Фоменко А.А.

Колесников В.Н.

Малышева Ф.А.

Чемурзиев Р.А.

Даты

2001-05-20Публикация

2000-05-18Подача