УСТРОЙСТВО ДЛЯ СОЗДАНИЯ ВАКУУМА В ПРОМЫШЛЕННЫХ АППАРАТАХ Российский патент 2001 года по МПК F04F5/02 

Описание патента на изобретение RU2171404C1

Изобретение относится к эжекторным установкам и может быть использовано в теплоэнергетике, химической и других отраслях промышленности для создания вакуума.

Известна эжекторная установка, содержащая жидкостно-газовый струйный аппарат, сепаратор, теплообменник и насос (авт. свид. N 99893, кл. F 04 F 5/08, 1951 г).

Недостаток известной установки заключается в большой потребляемой мощности.

Наиболее близким техническим решением к заявляемому устройству для создания вакуума в промышленных аппаратах является эжекторная установка для создания вакуума, содержащая последовательно соединенные сепаратор, насос, теплообменник и жидкостно-газовый струйный аппарат с камерой смешения и устройством подвода в него жидкости, и устройство подвода пассивной среды (газа), причем Φ - отношение площади минимального сечения камеры смешения струйного аппарата проходной площади выходного сечения устройства подвода в него жидкости лежит в диапазоне 8 - 200, отношение расстояния от выходного сечения устройства подвода жидкости до конца камеры смешения к диаметру минимального сечения камеры смешения определяется по зависимости а продольная ось струйного аппарата составляет с плоскостью зеркала жидкости в сепараторе угол β = 0-75 (патент РФ N 2016268, F 04 F 5/54, БИ 13, 1994 г).

Недостатками известной эжекторной установки являются низкий коэффициент эжекции и нестабильная работа при высоких вакуумах.

Задачей предлагаемого изобретения является увеличение коэффициента эжекции, обеспечение стабильности работы устройства для создания вакуума в промышленных аппаратах.

Поставленная задача решается тем, что в устройстве для создания вакуума в промышленных аппаратах, содержащем приемную камеру для ввода эжектируемого газа, устройство подвода эжектирующей жидкости с соплами, камеру смешения, согласно изобретению камера смешения выполнена с гладким геометрическим профилем в виде гиперболоида вращения с симплексами S1=0,05-0,5, S2=0,01-0,2, S3= 8-30, S4= 1,2-3,0, выбираемыми в зависимости от свойств, состава эжектируемого газа и эжектирующей жидкости, а также температуры и давления в системе и определяемыми эмпирическим путем, причем
S1 = d2/d1; S1/l1/l2; S3 = l3/d1; S4 = d4/d3, где 1 d1 - диаметр горла камеры смешения;
d2 - диаметр сопла;
d3 - входной диаметр камеры смешения;
d4 - выходной диаметр камеры смешения;
l1 - расстояние от горла сопла до торца ввода газожидкостной смеси в камеру смешения;
l2 - расстояние от горла камеры смешения до торца ввода газожидкостной смеси;
l3 - расстояние от горла до торца выхода газожидкостнои смеси из камеры смешения.

Кроме того, камера смешения выполнена в виде гиперболоида вращения, описываемого уравнением:
x2/a2 + y2/a2 - z/c2 = 1,
где x, y, z - координаты;
a и C - константы, выбираемые в зависимости от свойств, состава эжектируемого газа и эжектирующей жидкости, а также температуры и давления в системе, определяемые эмпирическим путем.

В результате такого взаимодействия эжектируемого газа с эжектирующей жидкостью образуется моносмесь, что позволяет получать устойчивый вакуум и высокий коэффициент эжекции.

Указанные выше основные геометрические соотношения элементов конструкции (симплекси) эжектора, полученные расчетным путем, уточнены экспериментальными испытаниями при варьировании давления, расхода и рода активной жидкости, давления, температуры и расхода отсасываемой газовой или парогазовой фазой, а также модульный принцип исполнения, дают возможность адаптировать предлагаемую конструкцию эжектора к условиям производства в широком диапазоне технологических требований и располагаемого насосного оборудования.

На чертеже представлен общий вид устройства для создания вакуума в промышленных аппаратах.

Устройство содержит фланец 1 для ввода эжектирующей жидкости, полость 2 для ввода эжектирующей жидкости, сопла 3 ввода эжектирующей жидкости в приемную камеру 4 для ввода эжектируемого газа, патрубок 5 ввода эжектируемого газа, фланец 6 подвода эжектируемого газа, камеры смешения 7, узел крепления 8 камер смешения, корпус устройства 9, выкидной патрубок с фланцем 10.

Устройство работает следующим образом.

Через фланец 1 в полость 2 нагнетается эжектирующая жидкость, которая проходя через сопла 3 и приемную камеру 4 для ввода эжектируемого газа, поступает в камеры смешения 7, выполненные в виде гиперболоидов вращения, где смешивается с эжектируемым газом с образованием газожидкостной моносмеси, которая затем поступает в выкидной патрубок 10.

Предлагаемое устройство предназначено для отсоса газовой и парогазовой фаз с целью создания разрежения в аппаратах и технологических системах химического, нефтехимического, пищевого и др. производств.

Устройство имеет модульную конструкцию и обеспечивает эффективную стабильную работу и глубину вакуума в широких диапазонах расходов.

Похожие патенты RU2171404C1

название год авторы номер документа
УСТРОЙСТВО ДЛЯ ПЕРЕМЕШИВАНИЯ ЖИДКОСТЕЙ В РЕЗЕРВУАРАХ 2001
  • Галиакбаров В.Ф.
  • Салихова Ю.Р.
  • Галиакбаров М.Ф.
  • Галиакбаров И.М.
RU2189852C1
СТРУЙНЫЙ СМЕСИТЕЛЬ ДЛЯ РЕЗЕРВУАРОВ 2015
  • Галиакбаров Виль Файзулович
  • Галиакбарова Эмилия Вильевна
  • Яхин Булат Ахметович
RU2594023C1
СПОСОБ РАБОТЫ НАСОСНО-ЭЖЕКТОРНОЙ УСТАНОВКИ И УСТАНОВКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2000
  • Галиакбаров В.Ф.
  • Алтынбаев Д.Р.
  • Галиакбаров М.Ф.
  • Драган В.Ф.
  • Лопатин И.Ф.
  • Халиуллин Р.С.
  • Хмельник А.Ю.
RU2166134C1
СОПЛО ДЛЯ СОЗДАНИЯ РЕАКТИВНОЙ ГАЗОВОЙ И ЖИДКОСТНОЙ СТРУИ ДЛЯ СМЕСТИТЕЛЕЙ 2016
  • Валеев Ренат Мазгутович
  • Вортман Олег Юльевич
  • Гатауллин Динар Гумерович
  • Гуссамов Марат Зайтунович
  • Насибуллин Марсель Сагадатович
  • Ризванов Марат Минасхатович
  • Тронин Дмитрий Евгеньевич
  • Фисенко Леонид Владимирович
RU2644604C1
СМЕСИТЕЛЬ 2000
  • Галиакбаров В.Ф.
  • Галиакбаров М.Ф.
  • Мингараев А.С.
  • Теляшев Г.Г.
RU2189851C2
Устройство для вызова пластового флюида и обработки скважины 2016
  • Бродский Михаил Борисович
  • Галиакбаров Виль Файзулович
  • Галиакбарова Эмилия Вильевна
  • Мустафин Камиль Мазгарович
  • Яхин Булат Ахметович
RU2640226C1
СТРУЙНЫЙ ГИДРАВЛИЧЕСКИЙ СМЕСИТЕЛЬ 2015
  • Галиакбаров Виль Файзулович
  • Галиакбарова Эмилия Вильевна
  • Яхин Булат Ахметович
RU2600998C1
СПОСОБ ТРАНСПОРТИРОВАНИЯ СЖАТОГО ГАЗА 2000
  • Басниев К.С.
  • Попов В.В.
  • Жуков В.В.
  • Прохоров А.Д.
  • Башмаков А.И.
  • Жуков И.В.
RU2179684C1
СТРУЙНОЕ УСТРОЙСТВО ДЛЯ ТРАНСПОРТИРОВАНИЯ СЫПУЧИХ МАТЕРИАЛОВ 2003
  • Гречишкин О.И.
RU2254281C1
СОСТАВ ДЛЯ ОБЕЗВОЖИВАНИЯ И ОБЕССОЛИВАНИЯ НЕФТИ И СПОСОБ ЕГО ПРИМЕНЕНИЯ В УСТРОЙСТВЕ ДЛЯ РАЗРУШЕНИЯ ВОДОНЕФТЯНЫХ ЭМУЛЬСИЙ 2000
  • Галиакбаров В.Ф.
  • Галиакбаров М.Ф.
  • Лопатин И.Ф.
  • Хмельник А.Ю.
  • Безмельницын В.С.
  • Шильников А.Ю.
  • Максимчик Л.П.
RU2178449C1

Реферат патента 2001 года УСТРОЙСТВО ДЛЯ СОЗДАНИЯ ВАКУУМА В ПРОМЫШЛЕННЫХ АППАРАТАХ

Изобретение относится к эжекторным установкам. Камера смешения выполнена с гладким геометрическим профилем в виде гиперболоида вращения с симплексами S1 = 0,05 - 0,5, S2 = 0,01 - 0,2, S3 = 8 - 30, S4 = 1,2 - 3,0, выбираемыми в зависимости от свойств, состава эжектируемого газа и эжектирующей жидкости, а также температуры и давления в системе, определяемыми эмпирическим путем, причем S1 = d2/d1, S2 = l1/l2, S3 = l3/d1, S4 = d4/d3, где d1 - диаметр горла камеры смешения, d2 - диаметр сопла, d3 - входной диаметр камеры смешения, d4 - выходной диаметр камеры смешения, l1 - расстояние от горла сопла до торца ввода газожидкостной смеси в камеру смешения, l2 - расстояние от горла камеры смешения до торца ввода газожидкостной смеси, l3 - расстояние от горла до торца выхода газожидкостной смеси из камеры смешения. В результате достигается увеличение коэффициента эжекции. 2 з.п. ф-лы, 1 ил.

Формула изобретения RU 2 171 404 C1

1. Устройство для создания вакуума в промышленных аппаратах, содержащее камеру для ввода эжектируемого газа, устройство для подвода эжектирующей жидкости с соплами, камеру смешения, отличающееся тем, что камера смешения выполнена с гладким геометрическим профилем в виде гиперболоида вращения с симплексами S1 = 0,05 - 0,5, S2 = 0,01 - 0,2, S3 = 8 - 30, S4 = 1,2 - 3,0, выбираемыми в зависимости от свойств, состава эжектируемого газа и эжектирующей жидкости, а также температуры и давления в системе, определяемыми эмпирическим путем, причем S1 = d2/d1, S2 = l1/l2, S3 = l3/d1, S4 = d4/d3, где d1 - диаметр горла камеры смешения, d2 - диаметр сопла, d3 - входной диаметр камеры смешения, d4 - выходной диаметр камеры смешения, l1 - расстояние от горла сопла до торца ввода газожидкостной смеси в камеру смешения, l2 - расстояние от горла камеры смешения до торца ввода газожидкостной смеси, l3 - расстояние от горла до торца выхода газожидкостной смеси из камеры смешения. 2. Устройство для создания вакуума в промышленных аппаратах по п.1, отличающееся тем, что камера смешения выполнена в виде гиперболоида вращения, описываемого уравнением

где x, y, z - координаты;
а и с - константы, выбираемые в зависимости от свойств состава эжектируемого газа и эжектирующей жидкости, а также температуры и давления в системе, определяемые эмпирическим путем.
3. Устройство для создания вакуума по п.1, отличающееся тем, что оно содержит несколько камер смешения в зависимости от производительности и состава газов.

Документы, цитированные в отчете о поиске Патент 2001 года RU2171404C1

ЭЖЕКТОРНАЯ УСТАНОВКА 1992
  • Акимов М.В.
  • Кинжалов А.Ю.
  • Цегельский В.Г.
RU2016268C1
Селектор импульсных сигналов 1980
  • Мелень Михаил Владимирович
SU875610A1
ЖИДКОСТНО-ГАЗОВЫЙ ВАКУУМНЫЙ СТРУЙНЫЙ АППАРАТ 1996
RU2103561C1
МНОГОСОПЛОВОЙ ЖИДКОСТНО-ГАЗОВЫЙ СТРУЙНЫЙ АППАРАТ (ВАРИАНТЫ) 1997
  • Попов С.А.(Ru)
RU2123616C1
ЖИДКОСТНО-ГАЗОВЫЙ ЭЖЕКТОР 1998
  • Попов С.А.(Ru)
RU2133882C1
US 5628623 А, 13.05.1997.

RU 2 171 404 C1

Авторы

Галиакбаров В.Ф.

Кузнецов В.Ю.

Халиуллин Р.С.

Лопатин И.Ф.

Хмельник А.Ю.

Галиакбаров М.Ф.

Даты

2001-07-27Публикация

2000-09-04Подача