СПОСОБ ПОЛУЧЕНИЯ МОДИФИЦИРОВАННОГО АКТИВНОГО УГЛЯ Российский патент 2001 года по МПК B01J20/20 C01B31/08 

Описание патента на изобретение RU2175885C1

Изобретение относится к области сорбционной техники и предназначается для очистки воздушных и жидких сред от высокотоксичных химических веществ.

Известен способ получения модифицированного угля, заключающийся в нанесении на гранулы угля гидрогеля алюмосиликата натрия путем напыления, обработке их раствором сульфата алюминия, промывке водой, высушивании, обработке 15-30% серной кислотой и прокаливании в инертной атмосфере при 800-1000 К. Получают активный уголь с оболочкой из алюмосиликата состава, мас.%: Al2O3 - 4-6, SiO2 - остальное, толщина пленки 0,05-0,2 диаметра гранул (авт. св. СССР N 1350111, кл. С 01 В 31/08, заявл. 13.01.84). Недостатком этого способа является сложность технологии. Кроме того, оболочка представляет собой алюмосиликат, хорошо поглощающий влагу, что не позволяет эффективно использовать этот сорбент в газовоздушной среде, содержащей влагу, и в водных средах.

Известен также способ гидрофобизации угля, заключающийся в пропитывании его водной суспензией фторопласта с концентрацией 1-2 % и последующей термообработке при 355-360oC в атмосфере инертного газа (СССР, авт.св. N 97160, кл. С 01 В 31/08, заявл. 25.08.84). Недостатком способа является невысокая адсорбционная способность угля, т.к. низкая температура термообработки не позволяет получить прочную пористую пленку на поверхности угля, в результате чего затрудняется доступ сорбента к поверхности угля, происходит блокирование микропор.

Наиболее близким к предлагаемому по технической сущности является способ модификации угля, заключающийся в пропитывании угля водным раствором поливиниловой или полиакриловой смолы и выдерживании частиц сначала в текучем состоянии, а затем при остекловывании (Россия, п. 2085486, кл. С 01 В 31/08 заявл. 01.01.94). Этот способ принят за прототип предлагаемого изобретения. Недостатком прототипа является образование на поверхности угля непористой пленки, которая препятствует проникновению сорбатов внутрь зерна, при этом сорбционная способность угля используется незначительно. Кроме того, применение поливиниловых и полиакриловых смол исключает использование полученного сорбента при повышенных температурах (разлагаются с выделением высокотоксичных веществ).

Техническим результатом изобретения является получение адсорбента с высокими адсорбционными свойствами, позволяющими использовать его для адсорбции высокотоксичных химических веществ, ацетона и др. Адсорбент, полученный по предлагаемому способу, обладает высокой прочностью при эксплуатации в воздушных и жидких средах, не выделяет пыли, что исключает унос адсорбируемых токсичных веществ с ней в окружающую среду.

Этот результат достигается тем, что берут уголь с суммарным объемом пор 0,4-1,8 см3/г, пропитывают сначала водой или раствором соляной кислоты концентрацией 1-4 вес.%, при соотношении суммарного объема пор угля и воды или раствора кислоты 1,0: (0,7-1,0), выдерживают на воздухе до сыпучести, а затем пропитывают 9-15% раствором термореактивной смолы в фурфуроле при весовом соотношении угля и раствора 1,0:(0,35-0,68), снова выдерживают на воздухе до сыпучести и термическую обработку ведут в токе углекислого газа со скоростью подъема температуры 450-900 град/ч до 700-900oC с последующей выдержкой при этой температуре 0,2-0,5 ч.

Пример 1. Берут 100 г угля, пропитывают 110 мл воды или раствором соляной кислоты (соотношение суммарного объема пор угля и воды или кислоты 1,0: 0,7), выдерживают на воздухе до сыпучести, готовят 9%-ный раствор термореактивной смолы в фурфуроле (7,5 г смолы и 70 г фурфурола), 40 мл полученного раствора пропитывают уголь (весовое соотношение угля и раствора 1: 0,5), дают вылежаться на воздухе, затем подвергают термической обработке при 850oC в течение 0,2 ч, скорость подъема температуры до заданной составляет 900 град/ч. Полученный адсорбент имеет прочность 64% и эффективный объем микропор 0,37 см3/г, другие характеристики приведены в таблице.

Пример 2. Все параметры, как в примере 1, за исключением пропиточного раствора. Готовят 15%-ный раствор смолы в фурфуроле (7,5 г смолы и 42,5 г фурфурола) и пропитывают уголь (соотношение угля и раствора 1:0,4). Полученный адсорбент имеет прочность 65,7 % и эффективный объем микропор 0,36 см3/г.

Пример 3. Количество воды или раствора соляной кислоты и пропиточного раствора равны соответственно 134 мл и 68 мл (соотношение суммарного объема пор угля и воды или кислоты 1: 0,68), остальные параметры, как в примере 2. Полученный адсорбент имеет прочность 68% и эффективный объем микропор 0,29 см3/г.

Пример 4. Соотношение угля и пропиточного раствора 1:0,35, все остальные параметры, как в примере 1. Полученный адсорбент имеет довольно высокую прочность - 62% и эффективный объем микропор, близкий к исходному углю - 0,38 см3/г.

Пример 5. Соотношение угля и пропиточного раствора 1:0,25, все остальные параметры, как в примере 1. Полученный адсорбент имеет пористость, близкую к исходному углю, прочность является низкой - всего лишь 57%.

Пример 6. Все параметры, как в примере 2, за исключением температуры термообработки, она равна 700oC. Полученный адсорбент имеет прочность 64% и эффективный объем микропор 0,32 см3/г.

Пример 7. Все параметры, как в примере 2, за исключением температуры термообработки, она равна 900oC. Полученный адсорбент имеет прочность 60% и эффективный объем микропор 0,37 см2/г.

Другие технологические параметры и характеристики сорбентов приведены в таблице.

Полученные данные показывают, что при весовом соотношении угля и пропиточного раствора 1: (0,35-0,6) и концентрации смолы в пропиточном растворе 9-15 вес.% прочность увеличивается на 17,5-24%, объем пор при этом уменьшается незначительно.

При концентрации смолы в пропиточном растворе 15% и весовом соотношении угля и пропиточного раствора 1:0,68 прочность увеличивается на 29%, объем пор уменьшается, но остается еще на достаточно высоком уровне.

Дальнейшее увеличение концентрации смолы в фурфуроле выше 15 % и весового соотношения угля и пропиточного раствора нецелесообразно, так как при незначительном увеличении прочности будет происходить значительное снижение объема пор.

За оптимальное весовое соотношение угля и пропиточного раствора принимаем 1,0:(0,35-0,68) при концентрации смолы в фурфуроле 9-15 вес.%.

При соотношении угля и раствора 1:0,25 получается адсорбент с низкой прочностью, при соотношении выше 1:0,68 - с низким объемом пор.

При изготовлении образцов пропиточный раствор должен располагаться на поверхности гранул, поэтому перед пропитыванием уголь пропитывается водой или раствором соляной кислоты концентрации 1-4 вес.% при соотношении суммарного объема пор угля и воды или раствора соляной кислоты 1,0:(0,7-1,0), чтобы пропиточный раствор не проникал внутрь гранул. При соотношении менее 0,7 какая-то часть пропиточного раствора проникает внутрь гранул, что приводит к некоторому снижению пористости и прочности готового продукта. При соотношении, большем 1, уголь будет очень влажным и перед пропитыванием потребуется его дополнительное подсушивание.

Введение раствора соляной кислоты повышает выход углеродной массы при активации смолы и фурфурола при концентрации кислоты ниже 1% эффект очень незначительный, повышение концентрации выше 4% делает пленку менее пористой (более толстой), что затрудняет доступ сорбируемых веществ внутрь гранул.

Термообработка осуществляется в течение 0,2-0,5 ч. При термообработке в течение менее 0,2 ч происходит частичная активация, не все количество веществ (смола и фурфурол) успевает проактивироваться. При времени термообработки более 0,5 ч происходит слишком большой обгар, и углеродная пленка, образующаяся на поверхности гранул, не обладает необходимой прочностью.

В результате многочисленных исследований экспериментально установлено, что оптимальной скоростью подъема температуры при термообработке является 450-900 град/ч. При скорости подъема ниже 450 град/ч происходит большой обгар ввиду значительного увеличения времени термообработки, при скорости выше 900 град/ч. идет неполное протекание процесса формирования пленки.

Как уже указывалось, суммарная пористость исходных углей составляет 0,4-1,8 см3/г. При суммарном объеме пор ниже 0,4 см3/г продукт будет иметь низкую адсорбционную емкость, при объеме пор выше 1,8 см3/г прочность продукта будет более низкая.

Термическая обработка проводилась при 700-900oC. При 700oC прочность повышается на 21%, объем пор, хотя и имеет тенденцию к снижению, но остается достаточно высоким для использования адсорбента в целях адсорбции. При 900oC объем пор на уровне образцов, полученных при 850oC, а прочность, хоть и понижается, но остается достаточно высокой. Из полученных данных оптимальной температурой термообработки считаем 700-900oC. При температуре ниже 700oC объем пор недостаточен, так как процесс активации нанесенных на гранулы веществ только еще начинается, а выше 900oC прочность будет понижаться в результате увеличения обгара. И в том, и в другом случае адсорбент обладает более широкими показателями по адсорбции и прочности.

В результате вышеуказанных действий на поверхности гранул угля образуется прочная пористая углеродная пленка (карбонизат), увеличивающая прочность исходного угля. Содержание карбонизата составляет 3-15 вес.%.

Как показывают данные таблицы, в результате предложенного способа получен адсорбент, прочность и адсорбционные свойства которого выше, чем у адсорбента, полученного по способу-прототипу.

Реализация предложенного способа позволит значительно расширить область применения активных углей, используемых для очистки газов и жидкостей от вредных примесей в индустриальных и природоохранительных целях, что даст возможность эффективно решить широкий круг экологических и технологических проблем.

Похожие патенты RU2175885C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ СФЕРИЧЕСКОГО УГЛЕРОДНОГО АДСОРБЕНТА 2003
  • Гурьянов В.В.
  • Мухин В.М.
  • Чебыкин В.В.
  • Дворецкий Г.В.
RU2257343C2
СПОСОБ ПОЛУЧЕНИЯ СОРБЕНТА-КАТАЛИЗАТОРА 2004
  • Алешина Г.В.
  • Гарцман И.И.
  • Карев В.А.
  • Кордиалик В.В.
  • Литвинская В.В.
  • Мухин В.М.
  • Соловьев С.Н.
  • Чебыкин В.В.
RU2254915C1
СПОСОБ ИЗГОТОВЛЕНИЯ СОРБЕНТА-КАТАЛИЗАТОРА 2002
  • Мухин В.М.
  • Крайнова О.Л.
  • Чебыкин В.В.
  • Дворецкий Г.В.
  • Фролов Н.А.
RU2195365C1
ПЕЧЬ ДЛЯ ТЕРМИЧЕСКОЙ ОБРАБОТКИ УГЛЕРОДСОДЕРЖАЩИХ МАТЕРИАЛОВ 2000
  • Мухин В.М.
  • Чумаков В.П.
  • Карев В.А.
  • Чебыкин В.В.
  • Зубова И.Д.
RU2158401C1
СПОСОБ ПОЛУЧЕНИЯ КАТАЛИЗАТОРА 2003
  • Мухин В.М.
  • Крайнова О.Л.
  • Чебыкин В.В.
  • Дворецкий Г.В.
  • Кордиалик В.В.
  • Мазничко А.А.
  • Фролов Н.А.
  • Симоянов А.А.
RU2228902C1
СПОСОБ ПОЛУЧЕНИЯ АКТИВНОГО УГЛЯ 2001
  • Мухин В.М.
  • Зубова И.Д.
  • Дворецкий Г.В.
  • Карев В.А.
  • Чебыкин В.В.
  • Крайнова О.Л.
  • Чумаков В.П.
RU2184080C1
СПОСОБ ПОЛУЧЕНИЯ АКТИВНОГО УГЛЯ 1998
  • Гурьянов В.В.
  • Дворецкий Г.В.
  • Киреев С.Г.
  • Крайнова О.Л.
  • Максимова Л.М.
  • Мухин В.М.
  • Смирнов В.Ф.
  • Чебыкин В.В.
RU2145938C1
СПОСОБ ПОЛУЧЕНИЯ ХЕМОСОРБЕНТА 1991
  • Мухин В.М.
  • Алешин А.И.
  • Шевчук С.А.
  • Тамамьян А.Н.
  • Никоноров А.Н.
RU2023503C1
СПОСОБ РЕГЕНЕРАЦИИ ДРЕВЕСНОГО АКТИВНОГО УГЛЯ 2000
  • Мухин В.М.
  • Зубова И.Д.
  • Дворецкий Г.В.
  • Карев В.А.
  • Гурьянов В.В.
  • Рогозин В.В.
RU2167103C1
СПОСОБ ПОЛУЧЕНИЯ СФЕРИЧЕСКОГО УГЛЕРОДНОГО АДСОРБЕНТА 1993
  • Гурьянов В.В.
  • Мушаров З.А.
  • Мухин В.М.
  • Васильев Н.П.
  • Голубев В.П.
  • Казанцев Б.П.
  • Карев В.А.
  • Работинский Н.И.
  • Смирнов В.Ф.
  • Соснихин В.А.
  • Чебыкин В.В.
  • Чиликин В.Е.
RU2026813C1

Иллюстрации к изобретению RU 2 175 885 C1

Реферат патента 2001 года СПОСОБ ПОЛУЧЕНИЯ МОДИФИЦИРОВАННОГО АКТИВНОГО УГЛЯ

Изобретение относится к области сорбционной техники, в частности к получению адсорбентов для очистки воздуха и жидких сред. Предложен способ получения модифицированного угля, включающий пропитку углей с суммарным объемом пор 0,4-1,8 см3/г водой или раствором соляной кислоты концентрации 1-4 вес.% при соотношении суммарного объема пор угля и воды или раствора кислоты 1,0:(0,7-1,0), а затем 9-15%-ным раствором термореактивной смолы в фурфуроле при весовом соотношении угля и раствора 1,0:(0,35-0,68), выдерживание до сыпучести и термообработку со скоростью подъема температуры 450-900 град/ч до 700-900oС с последующей выдержкой при этой температуре в течение 0,2-0,5 ч. Способ позволяет получать адсорбент, обладающий высокими адсорбционными свойствами и прочностью. 1 табл.

Формула изобретения RU 2 175 885 C1

Способ получения модифицированного угля, включающий пропитку его химическими веществами и термическую обработку, отличающийся тем, что уголь берут с суммарным объемом пор 0,4-1,8 см3/г, а пропитку осуществляют сначала водой или раствором соляной кислоты концентрации 1-4 вес.% при соотношении суммарного объема пор угля и воды или раствора кислоты 1,0 : (0,7-1,0), выдерживают на воздухе до сыпучести, а затем пропитывают 9-15%-ным раствором термореактивной смолы в фурфуроле при весовом соотношении угля и раствора 1,0 : (0,35-0,68), снова выдерживают на воздухе до сыпучести и термическую обработку ведут в токе углекислого газа со скоростью подъема температуры 450-900 град. /ч до 700-900oС с последующей выдержкой при этой температуре 0,2-0,5 ч.

Документы, цитированные в отчете о поиске Патент 2001 года RU2175885C1

СПОСОБ ПОЛУЧЕНИЯ СФЕРИЧЕСКОГО УГЛЕРОДНОГО АДСОРБЕНТА 1994
  • Чиликин Вячеслав Евгеньевич
  • Мушаров Замил Ахмедзянович
  • Гурьянов Василий Васильевич
  • Бакунина Наталья Михайловна
RU2085486C1
Модифицированный активный уголь и способ его получения 1984
  • Калмыкова Ирина Анатольевна
  • Сороко Валерий Евгеньевич
  • Бузанова Галина Николаевна
SU1350111A1
СПОСОБ ПОЛУЧЕНИЯ МОДИФИЦИРОВАННОГО АДСОРБЕНТА 1992
  • Ивахнюк Г.К.
  • Глухарев Н.Ф.
  • Филимонова Л.Н.
  • Левинсон В.Г.
  • Федоров Н.Ф.
  • Штабной В.А.
RU2071826C1
СПОСОБ ПОЛУЧЕНИЯ СФЕРИЧЕСКОГО УГЛЕРОДНОГО АДСОРБЕНТА 1982
  • Гурьянов В.В.
  • Бакунина Н.М.
  • Смирнов В.Ф.
  • Щербаков В.П.
  • Беляев М.П.
  • Воловик Г.И.
  • Кондратенко Р.П.
RU2073642C1

RU 2 175 885 C1

Авторы

Чебыкин В.В.

Смирнов В.Ф.

Карев В.А.

Дворецкий Г.В.

Паршенков М.В.

Максимова Л.М.

Мухин В.М.

Гурьянов В.В.

Петрунин В.А.

Шелученко В.В.

Кучинский Е.В.

Фокин Е.А.

Ульянов В.А.

Даты

2001-11-20Публикация

2000-12-13Подача