Изобретение относится к способу цементирования пород, в особенности песка. Конкретнее, настоящее изобретение относится к способу цементирования пород, встречающихся при бурении нефтяной скважины, при этом одновременно сохраняется проницаемость сцементированных зон.
Известно, что наличие песка в нефтяной скважине создает большие помехи, например, препятствующие потоку нефти (или газа) и повреждение оборудования, используемого для бурения.
В патентной литературе описываются различные способы цементирования песка, встречающиеся при бурении скважины.
Например, в US-A-3481403 описывается способ цементирования песка, который содержит нагнетание алкилового эфира и затем смолы. В литературе имеются и другие варианты, которые всегда основываются на использовании различных видов смол.
Все способы, основанные на использовании смол, являются особенно сложными и чувствительными, так как вышеуказанные композиции должны приготавливаться с соблюдением очень строгих процедур и, следовательно, могут оказаться неэффективными при присутствии в них случайных загрязнений.
Другой недостаток использования смол заключается в высокой вязкости (>20 сП) их растворов, подлежащих нагнетанию в породу, что препятствует обработке пород, имеющих проницаемость менее 50 мД.
Другой способ, используемый для цементирования песка, состоит в применении силиката натрия вместе с различными "схватывающими" веществами, как это описано в US-A-1421706 и US-A-3175611.
Однако использование силиката натрия также имеет недостатки, в частности, уменьшение проницаемости сцементированной породы.
Теперь найден способ цементирования песка в нефтяных или газовых скважинах, который устраняет вышеописанные неудобства.
В соответствии с этим настоящее изобретение относится к способу цементирования песка в скважинах для добычи текучих сред, особенно нефти и/или газа, содержащий следующие стадии:
1) необязательную предварительную промывку водным раствором неорганических солей, предпочтительно КСl;
2) нагнетание в породу цементирующего вещества, по существу состоящего из водного раствора силиката натрия в воде;
3) продувание инертным газом, предпочтительно, азотом, породы, обработанной на стадии (2), до удаления избыточного цементирующего вещества и воды, нагнетаемых на стадии (2);
4) введение в обработанную таким образом породу водного раствора кислоты, имеющей рКа при 25oС между 3 и 10, и предпочтительно выбранной из хлорида аммония и уксусной кислоты.
Способ по настоящему изобретению состоит из ряда стадий, которые следует проводить в последовательности.
Стадия (1) или предварительная промывка не имеет существенного значения в способе по настоящему изобретению, однако она желательна в том отношении, что позволяет удалить вещества, которые могут оказаться помехой в последующих стадиях, и прежде всего это касается воды.
В качестве вещества для предварительной промывки можно использовать растворы солей, в частности, хлористого калия и хлористого натрия.
Необязательная стадия (1) позволяет также подготавливать для последующей стадии (2) поверхности в отношении их смачиваемости.
Стадия (2) состоит во введении в породу водного раствора силиката натрия. Термин "силикат натрия" относится к веществам, имеющим различное отношение Na2O/SiO2, обычно между 1/2,40 и 1/3,85. Раствор силиката натрия содержит воду предпочтительно между 20 и 90 вес. %. Как известно специалистам в данной области, силикат натрия является типичным цементирующим или связующим веществом.
Стадия (3) состоит по существу в продувке породы, обработанной силикатом натрия, инертным газом, предпочтительно азотом. Эта операция позволяет удалять избыток силиката натрия из пустот породы, с тем, чтобы оставить пленку силиката натрия на каждой песчинке. Назначением стадии (3) является также удаление избыточной воды и способствование сцеплению силиката, введенного на стадии (2), с песчинками.
Поэтому важно проводить стадию /3/ с безводным инертным газом в течение времени, достаточном для удаления воды и обеспечения стабильного сцепления силиката с песком.
В качестве отличительного признака на стадии (3) обработку инертным газом проводят в течение 2-10 часов, предпочтительно в течение 4-6 часов при расходе 14-112 нм3/ч, предпочтительно 28-42 нм3/ч.
Наконец, стадия (4) состоит во введении в обработанную таким образом породу, получаемую в конце стадии (3), водного раствора, по существу состоящего из водного раствора кислоты с рКа между 3 и 10, предпочтительно уксусной кислоты и/или хлорида аммония. Содержание воды в растворе кислоты - предпочтительно 10-90%.
Важно, чтобы кислоты имели рКа в вышеуказанных пределах.
Действительно, более крепкие кислоты имеют тот недостаток, что они взаимодействуют с соединениями, возможно присутствующими в породе, результатом чего является закупоривание самой породы. С другой стороны, более слабые кислоты не имели бы необходимую крепость, чтобы вызвать образование кремнезема из силиката.
Нижеследующие примеры дают лучшее представление о настоящем изобретении.
Пример 1
Витоновую трубку диаметром 2,54 см и длиной 10 см заполняли песком, имеющим размер частиц 53-75 мкм. Трубку затем вставляли в ячейку Хасслера; после этого к трубке, заполненной песком, прилагали давление около 20 кг/см2, используя пневмосистему. Затем через песок пропускали водный раствор КСl с концентрацией 3 вес. %. Первоначальную проницаемость песка определяли путем измерения уменьшения потока при различных расходах, используя уравнение Дарси.
Затем в песок нагнетали водный раствор силиката натрия (для приготовления раствора использовали маточный раствор силиката натрия с 40o Боме, разбавленного до 70%). Вязкость раствора силиката натрия составляла 10 сП при 25oС. Промывку раствором силиката проводили при расходе 60 мл/ч в течение около 2 часов при 60oС. В конце двухчасового периода времени прекращали промывку силикатом и начинали продувку азотом. В первые несколько минут продувки азотом собирали раствор силиката, смытый самим азотом (около 20 мл). Продувку азотом проводили в течение 12 часов при температуре 60oС и расходе около 20 дм3/ч. Затем прекращали поток азота и промывали песок водным раствором хлорида аммония с концентрацией 15 вес. %. Водный поток хлорида аммония поддерживали в течение около 3 часов при расходе 60 мл/ч. После этого определяли конечную проницаемость сцементированного песка, измеряя при разных расходах уменьшение потока вследствие пропуска при комнатной температуре водного раствора КСl (при 3 вес. %).
Наконец, разбирали ячейку Хасслера и извлекали сцементированный песок из винтовой трубки. Степень цементирования определяли по измерениям прочности на сжатие, проводимым с использованием пресса "Инстрон".
Результаты показаны в таблице.
Пример 2
Использовали рабочую методику, аналогичную описанной в примере 1. Использовавшийся песок имел размер <53 мкм. Первоначальную и конечную проницаемость определяли так же, как и в примере 1. Степень цементирования определяли по измерениям механической прочности с использованием пресса "Инстрон".
Результаты показаны в таблице.
Пример 3
Использовавшееся оборудование было таким же, как и в примере 1. Использовали аналогичные песок и раствор силиката натрия, как и в примере 1, а также одинаковые способы нагнетания. Продувку азотом проводили при таких же самых расходе и продолжительности, как и в примере 1. После продувки азотом промывали водным раствором уксусной кислоты с концентрацией 20 вес. %. Поток водного раствора уксусной кислоты поддерживали в течение около 3 часов при расходе 60 мл/ч. Конечную проницаемость определяли, измеряя уменьшение потока при разных расходах вследствие прохождения водного раствора КСl (3 вес. %). Степень цементирования определяли по измерениям прочности на сжатие, используя пресс "Инстрон.
Результаты показаны в таблице.
Сравнительный пример 4
Использовали такую же самую рабочую методику, как и в примере 1. Продувку азотом проводили в течение одного часа вместо 12 часов. Наконец, в песок нагнетали водный раствор хлорида аммония (15 вес. %). Первоначальную и конечную проницаемость определяли так же, как и в примере 1. Степень цементирования определяли по измерениям механической прочности, используя пресс "Инстрон".
Результаты показаны в таблице.
Пример 5
Использовали такую же самую рабочую методику, как и в примере 2. Использовавшийся песок был взят из газовой скважины, расположенной в Южной Италии, и имел средний размер частиц, равный 84 мкм. Первоначальную и конечную проницаемость определяли так же, как в примере 1. Степень цементирования определяли по измерениям механической прочности, используя пресс "Инстрон".
Результаты показаны в таблице.
Пример 6
Использовали такую же самую рабочую методику, как и в примере 2. Использовавшийся песок был взят из газовой скважины, расположенной в Адриатическом море, и имел средний размер частиц, равный 40 мкм. Степень цементирования определяли по измерениям механической прочности, используя пресс "Инстрон".
Результаты показаны в таблице.
Из примеров 1, 2 и 3 можно видеть цементирование песка силикатами после длительного действия азота и при использовании слабых кислот в качестве связующих веществ (хлорида аммония или уксусной кислоты). При этих испытаниях проницаемость сохранялась на уровне 15-20%.
Из сравнительного примера можно видеть, что для осуществления цементирования и восстановления проницаемости необходимо длительное обезвоживающее действие азота.
Из примеров 5 и 6 можно видеть, что песок с низкой проницаемостью, полученный из продуктивных пластов, эффективно цементируется и что конечная проницаемость после цементирования больше первоначальной проницаемости вследствие стимулирующего действия кислоты на песок. Это явление вызвано наличием карбонатов в песке породы, которые частично растворяются под действием кислоты, делающим сцементированный песок более проницаемым, чем первоначальный несцементированный песок.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПРОДУЦИРОВАНИЯ ФЛЮИДОВ ИЗ ПОДКИСЛЕННЫХ СЦЕМЕНТИРОВАННЫХ ЧАСТЕЙ ПОДЗЕМНЫХ ПЛАСТОВ | 2005 |
|
RU2434126C2 |
СПОСОБ КРЕПЛЕНИЯ ПРИЗАБОЙНОЙ ЗОНЫ ПРОДУКТИВНОГО ПЛАСТА | 1999 |
|
RU2172811C2 |
СПОСОБ ИЗВЛЕЧЕНИЯ НЕФТИ ИЗ ТВЕРДОЙ МАТЕРИНСКОЙ ПОРОДЫ | 2011 |
|
RU2572634C2 |
СПОСОБ ОЧИСТКИ ВОДНОГО ПОТОКА, ПОСТУПАЮЩЕГО ПОСЛЕ РЕАКЦИИ ФИШЕРА-ТРОПША | 2009 |
|
RU2511362C9 |
СПОСОБ ПОЛУЧЕНИЯ КАТАЛИЗАТОРА НА ОСНОВЕ КОБАЛЬТА И СКАНДИЯ | 1998 |
|
RU2201801C2 |
СПОСОБ ПЕРЕМЕЩЕНИЯ ВЫСОКОВЯЗКИХ ОСТАТКОВ, ПОЛУЧАЕМЫХ ПРИ ПЕРЕРАБОТКЕ НЕФТИ | 2000 |
|
RU2205332C2 |
СПОСОБ ПОЛУЧЕНИЯ СРЕДНИХ ДИСТИЛЛЯТОВ ГИДРОИЗОМЕРИЗАЦИЕЙ И ГИДРОКРЕКИНГОМ ПРОДУКТОВ, ПОЛУЧЕННЫХ ПО СПОСОБУ ФИШЕРА-ТРОПША | 2006 |
|
RU2400524C2 |
СПОСОБ АКТИВИРОВАНИЯ ТИТАНСОДЕРЖАЩЕГО СИЛИКАЛИТА, ТИТАНСОДЕРЖАЩИЙ СИЛИКАЛИТНЫЙ КАТАЛИЗАТОР И СПОСОБ ОКИСЛЕНИЯ ОРГАНИЧЕСКОГО СУБСТРАТА | 1999 |
|
RU2159675C1 |
Тампонажный раствор | 1989 |
|
SU1726731A1 |
ЦЕМЕНТИРУЮЩАЯ КОМПОЗИЦИЯ, ВКЛЮЧАЮЩАЯ НЕИОННЫЕ ГИДРОФОБНО-МОДИФИЦИРОВАННЫЕ ПРОСТЫЕ ЭФИРЫ ЦЕЛЛЮЛОЗЫ, И ЕЕ ПРИМЕНЕНИЕ | 2013 |
|
RU2648363C2 |
Изобретение относится к способу цементирования пород, встречающихся при бурении нефтяных скважин. Технический результат - сохранение проницаемости сцементированных зон. Способ цементирования песка в скважине для добычи текучих сред, особенно нефти и/или газа, отличающийся тем, что содержит следующие стадии: по выбору предварительную промывку водным раствором неорганических солей, предпочтительно KCL, нагнетание в породу цементирующего вещества, по существу состоящего из водного раствора силиката натрия в воде, продувку инертным газом породы, обработанной на предыдущей стадии до удаления избыточных цементирующих веществ и воды, нагнетаемых на второй стадии, затем введение в обработанную таким образом породу водного раствора кислоты, имеющего рКа при 25oС между 3 и 10, третью стадию проводят продувкой азотом, причем инертный газ подают в породу в течение 2-10 ч при расходе 28-42 нм3/ч или инертный газ подают в породу в течение 4-6 ч при расходе 28-42 нм3/ч, причем на четвертой стадии стадии в породу вводят водный раствор кислоты, выбранный из хлорида аммония и уксусной кислоты. 4 з. п. ф-лы, 1 табл.
US 3175611 A, 30.03.1965 | |||
Способ временной изоляции призабойной зоны пласта | 1986 |
|
SU1423726A1 |
СПОСОБ ИЗОЛЯЦИИ ПРИТОКА ПЛАСТОВЫХ ВОД | 1992 |
|
RU2039208C1 |
US 4081029 A, 28.03.1978 | |||
US 4643254 А, 17.02.1978. |
Авторы
Даты
2002-01-10—Публикация
1997-09-12—Подача