Изобретение относится к устройствам измерения и учета тепловой энергии, передаваемой по трубам жидкими или газообразными носителями. Известны устройства, измеряющие расход теплоносителя и умножающие значения расхода на значения разности температур до и после объекта теплопотребления. Кроме того, должны быть учтены свойства теплоносителя.
Наиболее близким по технической сущности к предлагаемому является измеритель тепловой мощности, содержащий канал в виде корпуса, на поверхности которого размещены охлаждаемые датчики теплового потока, датчики температуры на входе и выходе канала (см. ДЕ, заявка 3303769, А1, МКИ G 01 K 17/10, 1983). Хотя такой измеритель прост по конструкции, но не нашел практического применения, поскольку разность температур между входом и выходом канала может быть весьма мала, особенно, при больших расходах теплоносителя. При этом соответственно мала и разность сигналов датчиков температуры. Применение электронного усиления сигнала в данном случае проблематично (сопоставимый уровень помех, нестабильность и прочее). Поэтому возникает необходимость получения большего сигнала. Это возможно за счет увеличения тепловых потерь на самом приборе, либо за счет применения большого числа датчиков температуры на входе и выходе канала. Во многих случаях эти способы нежелательны, так как это приводит к усложнению конструкции и увеличению габаритов прибора.
Получение достаточного уровня сигнала при сравнительно простом способе измерения разнести температур достигается в предлагаемом техническом решении. Для этого в теплосчетчике-расходомере, содержащем измерительно-вычислительное устройство, датчики температуры и расходомерную часть в виде канала, по бокам которого размещены датчики теплового потока с радиаторами, внутри канала расположены вдоль его оси два стакана, дном напротив друг друга, входной и выходной патрубки входят внутрь стаканов, а датчик разности температур помещен внутри канала, между дном одного и дном другого стаканов.
Предлагаемый теплосчетчик представлен на фиг.1. Расходомерная часть состоит из корпуса 1, радиаторов 2 с датчиками теплового потока 3. Внутри канала расположены стаканы 4 и 7, внутрь которых входят патрубки 5 и 6, а между дном одного и дном другого стаканов помещен датчик разности температур 8. Температура теплоносителя измеряется датчиком 9, а после объекта теплопотребления датчиком 10. Сигналы всех датчиков поступают на измерительно-вычислительное устройство 11.
Расходомерная часть работает следующим образом. Нагретый (или охлажденный) поток теплоносителя поступает во входной патрубок (например 5), омывает дно стакана, течет в обратную сторону по кольцевому каналу, образованному патрубком и стенками стакана. Затем поток поступает в следующий кольцевой канал, образованный корпусом 1 и стенками стаканов. При этом поток отдает (или принимает) в единицу времени через радиаторы 2 часть тепловой энергии q. Температура потока при этом изменяется на Δt. Затем поток опять проходит по кольцевым каналам и поступает в выходной патрубок, омывая дно второго стакана.
В подобных устройствах массовый расход теплоносителя G равен
где ср - теплоемкость теплоносителя.
Следовательно, измеряя величины q и Δt при известной ср, можно определить значение расхода. По характеристикам датчиков имеем:
для датчика 3 E1=k1•q,
для датчика 8 E2 = k2•Δt,
где k1 и k2 - коэффициенты преобразования датчиков. Отсюда следует
q=E1/k1; Δt = E2/k2.
Подставляя эти величины в формулу расхода, получаем
Известно, что количество теплоты, передаваемой объекту теплопотребления в единицу времени, равно
Q = cp•G•ΔT,
где ΔT - разность температур теплоносителя до и после объекта теплопотребления. При применении дифференциального способа измерения температур получим сигнал E3 = k3•ΔT, то есть ΔT = E3/k3. Следовательно, с учетам (1) получим, что
Таким образом в расчетную формулу (2) не входит теплоемкость теплоносителя, что является преимуществом устройств, в которых используется такой способ измерения.
Предлагаемый теплосчетчик может быть использован в виде простых, надежных и недорогих приборов по учету тепловой энергии. Кроме того, он может быть использован просто как расходомер, нагретых (или охлаждаемых) жидких или газообразных сред с учетом их теплоемкости.
Изобретение относится к устройствам измерения и учета тепловой энергии, передаваемой по трубам жидкими или газообразными теплоносителями. Прибор содержит измерительно-вычислительное устройство, датчики температуры и канал в корпусе. По бокам корпуса размещены датчики теплового потока с радиаторами. Внутри канала вдоль его оси расположены 2 стакана дном друг к другу. Входной и выходной патрубки входят внутрь стаканов. Между стаканами помещен датчик разности температур. Нагретый поток теплоносителя отдает через радиаторы часть тепловой энергии q, при этом меняется его температура на Δt. Измеряя q и Δt, вычислительное устройство определяет расход теплоносителя, а затем, с учетом его температуры, и количество переданной теплоты. Техническим результатом изобретения является возможность использования теплосчетчика в виде простых, надежных и недорогих приборов по учету тепловой энергии. 1 з.п. ф-лы, 1 ил.
DE 3303769, 03.09.1985 | |||
Тепломер | 1980 |
|
SU932294A1 |
Устройство для определения количества тепла протекающей среды | 1974 |
|
SU531501A3 |
Устройство для определения коэффициента теплоотдачи поверхности | 1989 |
|
SU1642276A1 |
Способ определения температуры теплообменной поверхности | 1980 |
|
SU950006A1 |
Цифровой интерполятор | 1977 |
|
SU665286A1 |
ФАЗОРЕГУЛЯТОР ДЛЯ ЭКСТРЕМАЛЬНОЙ СИСТЕМЫ С СИНХРОННЫМ ДЕТЕКТИРОВАНИЕМ | 0 |
|
SU388246A1 |
Авторы
Даты
2002-05-10—Публикация
1997-11-05—Подача