СПОСОБ КОНТАКТА ТЕКУЧИХ СРЕД В ПРОСТРАНСТВЕННОМ СТРУКТУРИРОВАННОМ ЭЛЕМЕНТЕ Российский патент 2002 года по МПК B01J19/32 B01D3/28 

Описание патента на изобретение RU2186617C2

Изобретение относится к процессам контакта текучих сред для их последующего разделения при абсорбции и ректификации между газом и жидкостью, при экстракции или разделении эмульсий, при сепарации и коалисценции мелкодисперсных капель жидкости в газовом потоке и может найти применение в газовой, нефтехимической, нефтяной, пищевой и других отраслях промышленности.

Известны способы контакта газа и жидкости в пространственных структурированных элементах, осуществляемые в устройствах: авт. св. 1042780, МКИ В 01 D 53/20, 16.02.82 г., авт. св. 1084035, МКИ В 01 D 53/20, В 01 D 3/32, 23.06.82 г. , патент 2150990, МПК В 01 D 53/74, 28.06.99 г., проспект научно-инженерной фирмы "Петон", Контактные устройства для ректификационных и абсорбционных аппаратов. Перекрестноточная регулярная насадка.

Недостатком этих способов является перекрестное течение жидкости и газа в микроструктуре (насадке), вследствие чего одной текучей средой (газом) из насадки выносится другая текучая среда (жидкость), то есть отсутствует безотрывное течение жидкости по микроструктуре.

Известен способ контакта газа и жидкости в регулярной насадке для тепломассообменных аппаратов (патент РФ 2113900, МПК 6 В 01 J 19/30, 27.06.98 г. ), прототип, в котором частично устранены вышеуказанные недостатки путем контакта текучих сред в пространственном структурированном элементе, в котором объемы макроструктур ограничены микроструктурами с подачей в элемент текучих сред (газа и жидкости) их контактирование в объемах и на поверхностях макро- и микроструктур без перекрестного течения жидкости и газа в насадке, в результате чего резко снижается вынос жидкости с газом из пространственного структурированного элемента.

К недостаткам этого способа следует отнести: отсутствие безотрывного течения жидкой среды от твердой поверхности, так как большая часть поверхности контакта является объемной твердой поверхностью; перетекание жидкости из микроструктуры (жгута) на поверхность пластин; срыв жидкости газовым потоком с поверхности листов, так как структурированная поверхность микроструктуры насадки (жгута) значительно меньше макроструктуры (поверхности листов).

Целью изобретения является повышение эффективности контакта путем уменьшения выноса одной из текучих сред другой текучей средой, и последующее разделение двух сред.

Поставленная цель достигается тем, что в способе контакта текучих сред в пространственном структурированном элементе с объемами макроструктур, ограниченными микроструктурами, включающий подачу текучих сред в элемент, их контактирование в объемах и на поверхностях макро- и микроструктур и отвод, в микроструктуре организуют безотрывный поток, по крайней мере, одной из жидких сред, движение которого обеспечивают действием одного или нескольких силовых полей, при этом жидкую текучую среду отводят из микроструктуры, а другую текучую среду из макроструктуры.

Безотрывный поток жидкой среды обеспечивают адсорбционным и (или) капиллярными свойствами структуры.

Обеспечивают движение потока жидкой среды в структуре, действуя на него гравитационным, электрическим, электромагнитным, волновым или другими полями.

Волновое поле создают, по крайней мере, одной из контактирующих текучих сред.

Организация в микроструктуре безотрывного потока, по крайней мере, одной из жидких сред, обеспечение движения этого потока в структуре действием одного или нескольких силовых полей, и отвод текучих сред из разных структур позволяют повысить эффективность контакта и последующего разделения двух сред за счет уменьшения выноса одной из текучих сред другой текучей средой.

Заявителю не известно способов контакта, в которых бы применение вышеуказанных приемов обеспечили безотрывное течение одной из жидких сред в микроструктуре.

На фиг.1,2,3 представлен пространственный структурированный элемент (три проекции), в котором происходит предложенный способ контакта.

Пространственный структурированный элемент 1 состоит из макроструктуры 2, ограниченной микроструктурой 3.

Способ реализуется следующим образом.

1. Одну из текучих сред, например газообразную, подают на пространственный структурированный элемент 1, состоящий из двух структур макроструктуры 2 и микроструктуры 3 снизу вверх (фиг.2. А), жидкую текучую среду подают на контакт навстречу движению газообразной (фиг. 2, Б). Текучие среды (газообразную и жидкую) контактируют при изменяющемся зигзагообразном движении и за счет инерционных сил они сталкиваются со стенками капилляров макро- и микроструктур 2 и 3. Жидкая среда, которая является гидрофильной по отношению к материалу микроструктур, смачивает твердую поверхность микроструктуры, из-за чего за счет сил поверхностного натяжения затягивает ее поверхность. Таким образом, образуют беспрерывное течение жидкой среды в микроструктуре и получают развитую поверхность контакта двух текучих сред (жидкой и газообразной). Причем силы поверхностного натяжения одной из текучих сред, а именно жидкости, больше сил другой текучей среды - газообразной, движущейся снизу вверх. Движение вниз по микроструктуре жидкой текучей среды, которая накапливается в микроструктуре, осуществляют под действием сил гравитации.

При недостаточности сил гравитации для осуществления движения безотрывного потока жидкой текучей среды в микроструктуре 3 создают волновое поле, по крайней мере, одной из контактирующих текучих сред (газообразной) путем вибрации стенок микроструктуры потоком газообразной текучей среды, для этого стенки микроструктуры 3 выполняют эластичными. Стенки микроструктуры 3 вибрируют при движении газообразной текучей среды и таким образом осуществляют принудительный отвод жидкой текучей среды.

Принудительное движение жидкой текучей среды выполняют с помощью постоянного электрического поля (тока), например, для организации движения водных растворов, которые являются электропроводной жидкостью. Жидкую текучую среду отводят из микроструктуры 3 и используют на следующей ступени контакта в другом структурированном элементе. Газообразную, текучую среду отводят по каналам макроструктуры 2.

2. В структурированном элементе 1 осуществляют контактирование двух жидких текучих сред. Для этого две жидкие текучие среды, например эмульсию, содержащую углеводородную, жидкую фазу, и водный раствор гликоля подают в пространственный структурированный элемент (фиг. 2. А). Поверхность микроструктуры 3 смачивается одной из жидких текучих сред. В движущемся потоке на поверхностях твердых макро- и микроструктур 2 и 3 осуществляют контактирование жидких текучих сред. При смачивании твердой поверхности микроструктуры 3 жидкая среда накапливается в ней и затягивает пространственные элементы микроструктуры, то есть происходит коллисценция капель жидкой среды. Движение образовавшегося в микроструктуре безотрывного потока жидкой текучей среды осуществляют действием сил гравитации или действием нескольких силовых полей, например электрического, и затем отводят по порам микроструктуры 3, а другую жидкую среду отводят по каналам макроструктуры 2.

Примеры.

1. В пространственный структурированный элемент, выполненный в виде пакета насадки с изменяющими направление каналами, образованными микроструктурами и исключающими прямой проскок текучих сред, сверху подают жидкость - регенерированный триэтиленгликоль (РТЭГ) концентрацией 98,4% массовых в количестве 3800 кг, а снизу - сырой природный газ с содержанием метана более 90% в количестве 168195 кг/ч при давлении 7,5 МПа и температуре 20oС.

Газ при контакте с жидкостью дробит ее на капли, при этом происходит контактирование газа с поверхностью жидкости при изменяющемся зигзагообразном движении текучих сред. За счет сил инерции капли жидкости сталкиваются со стенками микроструктур, смачивают ее и проникают в поры микроструктур. Решетку микроструктуры выбирают такого размера, что накопившаяся жидкость свободно стекает по порам микроструктуры под действием сил тяжести (гравитационных сил), то есть в микроструктуре, выполненной из объемно-пористого материала, организуют безотрывный поток стекающей жидкой среды - насыщенного триэтиленгликоля (НТЭГ). Отвод НТЭГ производят из микроструктуры на нижележащий структурированный элемент, где контакт с газом повторяется. Отвод проконтактировавшего газа производят на вышележащий структурированный элемент или из аппарата.

В результате применения предложенного способа контакта получают сухой газ в количестве 168110 кг/ч с точкой росы по влаге минус 20oС, и из микроструктуры отбирают НТЭГ с концентрацией 96,67% массовых.

2. В пространственный структурированный элемент, в котором в каналы, организованные микроструктурой подают эмульсию, содержащую водный раствор гликоля в количестве 3% объемных, в количестве 1 м2/ч при температуре 20oС и углеводородный конденсат в количестве 97об.%. В объемах и на поверхностях макро- и микроструктуры осуществляют их контакт. При контакте водный раствор смачивает микроструктуру, проникает и накапливается в ней. Накопившийся водный раствор под действием сил тяжести стекает вниз в микроструктуре. Таким образом, используя капиллярные свойства микроструктуры, в ней организуют безотрывный поток насыщенной водой эмульсии. Скопившуюся тяжелую жидкую среду (раствор гликоля) собирают и в количестве 2,999 об.% отводят в качестве готового продукта, оставшиеся углеводороды отбирают с верхней части насадки.

Таким образом, организация в микроструктуре пространственного структурированного элемента безотрывного потока, по крайней мере, одной из жидких сред и обеспечение движения этого потока в микроструктуре действием одного силового поля повысили эффективность разделения путем уменьшения выноса одной из текучих сред другой текучей средой, а отвод, по крайней мере, одной из двух жидких текучих сред из микроструктуры позволил использовать ее в качестве продукта на следующих ступенях контакта в других структурированных элементах.

Похожие патенты RU2186617C2

название год авторы номер документа
РЕГУЛЯРНАЯ НАСАДКА ДЛЯ СЕПАРАЦИОННЫХ И МАССООБМЕННЫХ АППАРАТОВ 2000
  • Зиберт Г.К.
RU2168356C1
РЕГУЛЯРНАЯ НАСАДКА ДЛЯ ТЕПЛО- И МАССООБМЕННЫХ АППАРАТОВ 2001
  • Зиберт Г.К.
  • Кащицкий Ю.А.
  • Куликова С.Н.
RU2188706C1
КОЛОННА ДЛЯ ПРОВЕДЕНИЯ МАССООБМЕННЫХ ПРОЦЕССОВ 1999
  • Зиберт Г.К.
RU2150990C1
СПОСОБ КОНТАКТА ГАЗА И ЖИДКОСТИ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2001
  • Зиберт Г.К.
RU2192912C1
ЦЕНТРОБЕЖНЫЙ СЕПАРАТОР 1999
  • Толстов В.А.
RU2147913C1
РАСПРЕДЕЛИТЕЛЬ ЖИДКОСТИ МАССООБМЕННЫХ АППАРАТОВ 2001
  • Зиберт Г.К.
RU2191616C1
СПОСОБ ПРОВЕДЕНИЯ АБСОРБЦИОННЫХ ПРОЦЕССОВ 1998
  • Зиберт Г.К.
  • Запорожец Е.П.
  • Зиберт Р.Г.
RU2151631C1
ПОДОГРЕВАТЕЛЬ ЖИДКИХ И ГАЗООБРАЗНЫХ СРЕД 2000
  • Шайхутдинов Р.М.
  • Гавриков И.К.
  • Головляницына Е.А.
  • Шайхутдинов А.Р.
RU2182679C2
ПЫЛЕУЛОВИТЕЛЬ 2000
  • Толстов В.А.
RU2165785C1
СПОСОБ ОСУШКИ ГАЗА 1999
  • Зиберт Г.К.
RU2155092C1

Иллюстрации к изобретению RU 2 186 617 C2

Реферат патента 2002 года СПОСОБ КОНТАКТА ТЕКУЧИХ СРЕД В ПРОСТРАНСТВЕННОМ СТРУКТУРИРОВАННОМ ЭЛЕМЕНТЕ

Способ контакта текучих сред в пространственном структурированном элементе с объемами макроструктур, ограниченными микроструктурами, относится к процессам контакта текучих сред для их последующего разделения при абсорбции и ректификации между газом и жидкостью, при экстракции или разделении эмульсий, при сепарации и коалисценции мелкодисперсных капель жидкости в газовом потоке и может найти применение в газовой, нефтехимической, нефтяной, пищевой и других отраслях промышленности. Способ включает подачу текучих сред в элемент, их контактирование в объемах и на поверхностях макро- и микроструктур, организацию в микроструктуре безотрывного потока, по крайней мере, одной из жидких сред, обеспечение движения этого потока действием одного или нескольких силовых полей, отвод жидкой текучей среды из микроструктуры, а другой текучей среды - из макроструктуры. Способ обеспечивает повышение эффективности контакта путем уменьшения выноса одной из текучих сред другой текучей средой. 2 з.п. ф-лы, 3 ил.

Формула изобретения RU 2 186 617 C2

1. Способ контакта текучих сред в пространственном структурированном элементе с объемами макроструктур, ограниченными микроструктурами, включающий подачу текучих сред в элемент, их контактирование в объемах и на поверхностях макро- и микроструктур и последущий отвод жидкой текучей среды из микроструктуры, а другой текучей среды из макроструктуры, отличающийся тем, что в микроструктуре организуют беспрерывный безотрывный принудительный поток за счет действия одного или нескольких силовых полей. 2. Способ по п.1, отличающийся тем, что принудительный поток жидкой среды обеспечивают электрическим, электромагнитным, волновым или другими полями. 3. Способ по пп.1 и 2, отличающийся тем, что волновое поле создают, по крайней мере, одной из контактирующих сред.

Документы, цитированные в отчете о поиске Патент 2002 года RU2186617C2

РЕГУЛЯРНАЯ НАСАДКА ДЛЯ ТЕПЛОМАССООБМЕННЫХ АППАРАТОВ 1997
  • Зиберт Г.К.
RU2113900C1
Регулярная насадка для тепломассообменных аппаратов 1989
  • Карасев Владимир Евгеньевич
  • Квашнин Сергей Яковлевич
  • Шостак Виктор Васильевич
  • Кулов Николай Николаевич
  • Тюрина Галина Евгеньевна
SU1655557A1
Контактное устройство пленочного типа 1987
  • Зиганшин Галимзян Каримович
  • Марушкин Борис Константинович
  • Ракочий Николай Владимирович
  • Макаров Анатолий Дмитриевич
  • Шуверов Владимир Михайлович
  • Крылов Валерий Александрович
  • Захаров Михаил Евгеньевич
  • Федотов Виталий Егорович
  • Хайбрахманов Альфред Шарифьянович
  • Дегтерев Николай Сергеевич
SU1510850A1
КОЛОННА ДЛЯ ПРОВЕДЕНИЯ МАССООБМЕННЫХ ПРОЦЕССОВ 1999
  • Зиберт Г.К.
RU2150990C1
Машина для штапелирования жгута из искусственного волокна 1951
  • Белицин И.М.
  • Кориковский П.К.
  • Рыбаков В.М.
  • Соловьев В.Е.
SU97345A1
1971
SU416649A1

RU 2 186 617 C2

Авторы

Зиберт Г.К.

Запорожец Е.Е.

Даты

2002-08-10Публикация

2000-07-05Подача