МАГНИТНЫЙ СЕПАРАТОР Российский патент 2002 года по МПК B03C1/00 B01D35/06 C10M175/04 

Описание патента на изобретение RU2186628C1

Изобретение относится к области магнитной очистки технологических жидкостей (ТЖ) (смазочно-охлаждающих жидкостей СОЖ, моющих растворов) от твердых и коллоидных частиц и примесей и может быть использовано на металлообрабатывающих производствах, включающих обработку металлов давлением, резанием.

Известно устройство для очистки жидкостей от ферромагнитных частиц [а.с. 1755929, В 03 С 1/00], включающее емкость, снабженную патрубками для подачи загрязненной и для выхода очищенной СОЖ. В емкости по высоте заполнения жидкостью размещен бесконечный приводной цепной конвейер с возможностью перемещения по криволинейной траектории в вертикальной плоскости. Звенья конвейера представляют собой магнитные стержни, выполненные в виде набора магнитных элементов эллиптической формы, разделенных прокладками из магнитомягкого материала. Продольная ось стержней перпендикулярна продольной оси конвейера. В верхней части сепаратора, выше уровня заполнения СОЖ, имеется приводной шламосъемник для очистки стержней.

Известное устройство имеет ряд недостатков.

Полноценная работоспособность магнитного сепаратора требует точно согласованной работы шламосъемника, выполняющего поступательно-поворотные движения, и большого количества подвижных элементов - это 2 шарнира на каждый стержень, по 2 компоновочные звездочки на каждое колено, что обеспечивается крайне сложно. Криволинейная траектория движения и значительная общая протяженность конвейера приводит к потере жесткости цепного конвейера и, соответственно, к осевым перекосам стержней, что часто приводит к аварийным остановкам конвейера. Сложная кинематика магнитного сепаратора накладывает ограничения на скорость движения конвейера, что в свою очередь снижает шламоемкость патронов. В начале пути при погружении стержней в СОЖ происходит активное образование на них слоя магнитных частиц ограниченной высоты ввиду ослабления магнитного поля на периферии слоя. К концу пути на стержнях не происходит осаждение шлама. Работа всех подвижных элементов осложняется присутствием грязеводомасляной среды, все вращающиеся части работают в очень сложных условиях при наличии грязи, абразива, металла, отсюда повышенный износ, низкая долговечность, низкая надежность.

Наиболее близким по техническом сущности является магнитный сепаратор по а. с. 915897, содержащий корпус с подводящим и отводящим патрубками и с трубной доской в качестве установочной рамы в верхней части корпуса, к которой прикреплены посредством резьбового соединения вертикальные немагнитные стержни с нанизанными на них магнитными и немагнитными шайбами. По сечению корпуса стержни расположены в шахматном порядке. Средство для удаления шлама выполнено в виде регенерационных труб, установленных вертикально между магнитными стержнями. Каждая из труб равноудалена от трех ближайших магнитных стержней и имеет в плоскостях немагнитных (сорбционных) шайб три радиальных отверстия в направлении осей магнитных стержней. Регенерационные трубы подключены к системе напорного водоснабжения, при этом распределительная система подачи отмывочной воды расположена внутри корпуса.

Недостаточные эффективность и производительность очистки, малая шламоемкость стержней, дополнительный расход технической воды, продолжительное время регенерации, большие габариты и технологическая сложность конструкции объясняются следующим. Комплект водонапорных труб занимает большое место внутри корпуса и этот объем потерян для задачи очистки конденсата. Этим объясняется малая производительность сепаратора 100 м3/час при его габаритах 1,5x4 м. Периодичность регенерации стержней определяется объемом корпуса, a не объемом осажденного магнитного шлама. Так в конце процесса очистки конденсата в корпусе ввиду образования слоя магнитных частиц происходит ослабление магнитного поля на периферии слоя и существенно снижается степень очистки. Малоэффективна регенерация стержней путем создания напорных струй поды, поскольку первый слой магнитного шлама на поверхности шайб и ближайшие к нему, расположенные по месту концентрации магнитного поля, не сбиваются струей, что подтверждает указанная степень регенерации стержней 80-90%. Технологическая сложность объясняется тем, что имеют место жесткие требования по сочетанию магнитных и немагнитных шайб, по расположению сопел и полюсных шайб в одной плоскости, при этом и трубы, и стержни представляют собой объемную конструкцию, что затрудняет их сборку в закрытом корпусе.

Технической задачей изобретения является повышение эффективности очистки (увеличение степени очистки и шламоемкости стержней) при одновременном увеличении производительности процесса сепарации, повышение технологичности конструкции сепаратора, улучшение условий наладки и эксплуатации магнитного сепаратора, повышение надежности конструкции и уменьшение его габаритов.

Поставленная техническая задача решена заявляемым изобретением.

Предложен магнитный сепаратор для очистки технологической жидкости, содержащий емкость с подводящим и отводящим патрубками для размещения обрабатываемой технологической жидкости, установочную раму, цилиндрические магнитные патроны в виде набора цилиндрических дисковых магнитов, имеющих вертикальную продольную ось и крепление головной части патрона посредством резьбового соединения, средство для удаления шлама, отличающийся тем, что магнитные патроны установлены головной частью с радиальным зазором на траверсе, снабженной приводом и укрепленной на раме с возможностью линейного вертикального возвратно-поступательного перемещения, при этом магнитные патроны в плане расположены, по крайней мере, в два ряда, ориентированных в поперечном направлении потоку технологической жидкости в емкости и порядно сдвинутые в том же направлении относительно друг друга, а средство для удаления шлама содержит средство транспортирования шлама в виде конвейера, снабженного приводом и установленного на дне емкости, и шламосъемник, манжеты которого охватывают нижней кромкой каждый магнитный патрон по скользящей посадке, и скреплены с рамой над уровнем заполнения емкости технологической жидкостью.

Траверса магнитного сепаратора установлена на раме посредством линейного подшипника качения, направляющие которого расположены на вертикальной колонне.

Каждый магнитный патрон сепаратора установлен в сквозных отверстиях траверсы с зазором и зафиксирован в осевом вертикальном направлении посредством резьбового соединения головной части патрона с траверсой.

Совокупность магнитных патронов имеет, преимущественно, два ряда с расположением установочных мест так, что ближайшие три патрона в двух рядах равноудалены друг от друга. Один из вариантов выполнения состоит в том, что ближайшие три патрона в двух рядах равноудалены друг от друга на расстоянии 15÷40 мм.

Магнитные патроны выполнены в виде набора постоянных магнитов в форме дисков, разделенных прокладками из магнитомягкого материала и помещенных в немагнитную гильзу.

Манжеты шламосъемника выполнены из эластичного материала.

Привод траверсы сепаратора выполнен в виде гидроцилиндра гидропривода.

На фиг. 1 представлен общий вид сепаратора и его основных узлов, на фиг. 2 показана компоновка магнитного патрона на траверсе, на фиг.3 показан магнитный патрон и его закрепление на траверсе.

В емкости 1 с подводящим и отводящим патрубками 2 и 3 размещена установочная рама 4, снабженная линейным подшипником качения, направляющие которого расположены на вертикальной колонне 5. Каретка 6 подшипника жестко соединена с траверсой 7, снабженной приводом 8 в виде гидроцилиндра гидропривода. На траверсе укреплены в два ряда вертикальные магнитные патроны 9. Направление рядов перпендикулярно потоку очищаемой жидкости в емкости 1. Высота патронов задается техническими требованиями, уровнем ТЖ в емкости, расчетной производительностью и т.д. Диаметр патронов составляет 30÷35 мм из практических соображений: они должны быть достаточно жесткими и прочными, технологичными с позиций сборки и замены, создавать достаточное магнитное поле для улавливания частиц, должны быть равномерно распределены в емкости на расстоянии, достаточном для максимальной шламоемкости патронов.

Патроны в плане располагаются так, что ближайшие три патрона равноудалены друг от друга (фиг.2). Это в два раза увеличивает эффективную площадь магнитной обработки. Поток ТЖ через зазоры патронов первого ряда разделяется на два, в которых соответственно скорость движения частиц падает вдвое, что улучшает условия улавливания частиц и в целом повышает эффективность очистки. Число рядов патронов может быть выполнено более двух и теоретически степень очистки при этом будет выше. Но с другой стороны это приведет:
- к увеличению металлоемкости и цены сепаратора,
- технологически сложнее осуществить взаиморасположение патронов и фильер,
- усложняются условия эксплуатации.

Исходя из этих соображений выбирается наиболее целесообразная двухрядная компоновка патронов 9.

Каждый патрон охвачен манжетой 10 шламосъемника (фиг.3). Нижней кромкой, снимающей шлам с патрона, манжета плотно охватывает патрон по скользящей посадке, а в верхней части отверстие манжеты расширяется, образуя зазор, как показано на фиг. 3. Такая форма манжеты придает конструктивную прочность, износостойкость без увеличения поверхность трения и скольжения, что повышает долговечность всей конструкции в целом. Манжеты выполнены из эластичного материала, например из резины. Это обеспечивает минимальный износ патрона и не ухудшает скольжение по патрону при его допустимых радиальных смещениях. Манжеты каждая посредством двух металлических шайб 11 и 12 сгруппированы основанием 13 и укреплены на раме 4 над уровнем заполнения емкости ТЖ.

Чтобы избежать заклинивания при скольжении манжет 10 по патронам 9, патроны установлены в отверстиях 14 траверсы 7 с радиальным зазором. В осевом вертикальном направлении посадка патронов зафиксирована, например, так, как показано на фиг.3. Головная часть патрона 9 укреплена с помощью шайбы 15, гайки 16 и контргайки 17.

Транспортирование осажденного шлама осуществляется скребковым конвейером 18, снабженного приводом 19 и установленного на дне емкости 1.

Магнитные патроны 9 выполнены в виде постоянных магнитов 20 (фиг.3) в форме дисков, разделенных прокладками из магнитомягкого материала, например Ст3, и помещенных в тонкостенную немагнитную гильзу 21, например, из латуни толщиной 0,5-1 мм. Такая гильза практически не уменьшает и не искажает магнитное поле, создаваемое постоянными магнитами, предохраняет хрупкие магниты от разрушения (от воздействия трения и соударения с манжетами), предотвращает шунтирование шламовыми частицами магнитного поля в местах стыков и создает условие хорошего скольжения манжет.

Приводной механизм сепаратора в виде гидроцилиндра связан с гидростанцией.

Работа магнитного сепаратора имеет два основных режима: сепарация ТЖ и очистка магнитных патронов, и осуществляется следующим образом.

1 Режим сепарации. Траверса 7 находится в нижнем положении, при этом патроны 9 погружены в очищаемую ТЖ, перекрывая поток ТЖ в емкости 1. Происходит активное осаждение магнитного шлама па патронах. С увеличением слоя шлама эффективность улавливания частиц снижается ввиду снижения напряженности магнитного поля к периферии шламового слоя. Достаточность цикла сепарации определяется либо оператором опытным путем, либо иными средствами (по времени, по массе шлама и пр.)
2 Режим очистки магнитных патронов. Траверса 7 поднимается в верхнее положение до полного извлечения патронов 9 из ТЖ. Поэтому манжеты находятся выше уровня очищаемой жидкости. Неполное извлечение патронов привело бы к скапливанию части шлама в верхней части сепаратора и, соответственно, к вынужденным профилактическим остановкам, имея в виду непрерывное осаждение шлама на магнитных патронах. При подъеме патронов манжеты 10 снимают слой магнитного шлама, который на патроне под действием магнитных сил собирается в более крупные образования, то есть конгломерируется и без раздробления, проходя слой жидкости и звенья конвейера, оседает на дне емкости. Скребковый конвейер подбирает куски шлама и транспортирует его из емкости.

После очистки патронов 9 сепаратор готов к исполнению первого режима, и приводом 8 траверса с патронами опускается в нижнее положение.

Преимущества заявляемого сепаратора:
- простая кинематика, мало вращающихся деталей, отсутствие механизмов, кроме магнитных патронов, в среде ТЖ, высокая технологичность конструкции, высокая надежность,
- степень очистки 93-98%, производительность выше по сравнению с прототипом в 2 и более раз:
- равномерная нагрузка на все патроны в течение времени эффективной очистки,
- легко перестраиваемая конструкция в зависимости от требуемой производительности, конструкция патронов легко заменяемая и перестраиваемая по высоте (от десятков см до 3÷4 м).

Похожие патенты RU2186628C1

название год авторы номер документа
МАГНИТНЫЙ СЕПАРАТОР 2006
RU2317130C2
МАГНИТНЫЙ СЕПАРАТОР 2006
RU2317131C2
МАГНИТНЫЙ СЕПАРАТОР 2001
RU2207912C2
МАГНИТНЫЙ СЕПАРАТОР 2000
RU2187378C2
МАГНИТНЫЙ СЕПАРАТОР 2000
RU2187377C2
ПАТРОННЫЙ МАГНИТНЫЙ СЕПАРАТОР ПОГРУЖНОЙ 2008
  • Черабаев Анатолий Степанович
  • Черабаев Алексей Анатольевич
RU2385187C2
ПАТРОННЫЙ МАГНИТНЫЙ СЕПАРАТОР ПОВОРОТНЫЙ 2008
  • Черабаев Анатолий Степанович
  • Черабаев Алексей Анатольевич
RU2385186C2
МАГНИТНЫЙ СЕПАРАТОР 2002
RU2207913C1
ПАТРОННЫЙ МАГНИТНЫЙ СЕПАРАТОР 2008
  • Черабаев Анатолий Степанович
  • Черабаев Алексей Анатольевич
RU2365422C1
УНИФИЦИРОВАННЫЙ КОМПЛЕКС ДЛЯ ОЧИСТКИ ПРОМЫШЛЕННЫХ И БЫТОВЫХ СТОЧНЫХ ВОД И ОБОРОТНЫХ ЖИДКОСТЕЙ 2004
  • Булыжёв Евгений Михайлович
  • Булыжёв Эдуард Евгеньевич
RU2286826C2

Иллюстрации к изобретению RU 2 186 628 C1

Реферат патента 2002 года МАГНИТНЫЙ СЕПАРАТОР

Изобретение относится к области магнитной очистки технологических жидкостей от твердых и коллоидных частиц и примесей и может быть использовано на металлообрабатывающих производствах. Технический результат - повышение эффективности очистки, увеличение производительности процесса сепарации, повышение технологичности конструкции сепаратора, улучшение условий наладки и эксплуатации магнитного сепаратора, повышение надежности конструкции и уменьшение его габаритов. Магнитный сепаратор содержит емкость с подводящим и отводящим патрубками для размещения обрабатываемой технологической жидкости, установочную раму, цилиндрические магнитные патроны, установленные головной частью с радиальным зазором на траверсе, снабженной приводом в виде гидроцилиндра и укрепленной на раме посредством линейного подшипника качения, направляющие которого расположены на вертикальной колонне. Магнитные патроны в плане расположены в два ряда с расположением установочных мест так, что ближайшие три патрона в двух рядах равноудалены друг от друга. Средство для удаления шлама содержит средство транспортирования шлама в виде конвейера, снабженного приводом и установленного на дне емкости, и шламосъемник, манжеты которого охватывают каждый магнитный патрон и скреплены с рамой. Магнитные патроны выполнены в виде набора постоянных магнитов. 6 з.п. ф-лы, 3 ил.

Формула изобретения RU 2 186 628 C1

1. Магнитный сепаратор для очистки технологической жидкости, содержащий емкость с подводящим и отводящим патрубками для размещения обрабатываемой технологической жидкости, установочную раму, цилиндрические магнитные патроны в виде набора цилиндрических дисковых магнитов, имеющих вертикальную продольную ось и крепление головной части патрона посредством резьбового соединения, средство для удаления шлама, отличающийся тем, что магнитные патроны установлены головной частью с радиальным зазором на траверсе; снабженной приводом и укрепленной на раме с возможностью линейного вертикального возвратно-поступательного перемещения, при этом магнитные патроны в плане расположены, по крайней мере, в два ряда, ориентированных в поперечном направлении потоку технологической жидкости в емкости и порядно сдвинутые в том же направлении относительно друг друга, а средство для удаления шлама содержит средство транспортирования шлама в виде конвейера, снабженного приводом и установленного на дне емкости, и шламосъемник, манжеты которого охватывают нижней кромкой каждый магнитный патрон по скользящей посадке, и скреплены с рамой над уровнем заполнения емкости технологической жидкостью. 2. Магнитный сепаратор по п.1, отличающийся тем, что траверса установлена на раме посредством линейного подшипника качения, направляющие которого расположены па вертикальной колонне. 3. Магнитный сепаратор по п.1, отличающийся тем, что каждый магнитный патрон сепаратора установлен в сквозных отверстиях траверсы с зазором и зафиксирован в осевом вертикальном направлении посредством резьбового соединения головной части патрона с траверсой. 4. Магнитный сепаратор по п.1, отличающийся тем, что совокупность магнитных патронов имеет два ряда и более с расположением установочных мест так, что ближайшие три патрона равноудалены друг от друга. 5. Магнитный сепаратор по п.1, отличающийся тем, что магнитные патроны выполнены в виде набора постоянных магнитов в форме дисков, разделенных прокладками из магнитомягкого материала и помещенных в немагнитную гильзу. 6. Магнитный сепаратор по п.1, отличающийся тем, что манжеты шламосъемника выполнены из эластичного материала. 7. Магнитный сепаратор по п.1, отличающийся тем, что привод траверсы сепаратора выполнен в виде гидроцилиндра гидропривода.

Документы, цитированные в отчете о поиске Патент 2002 года RU2186628C1

SU 915897 А, 30.03.1982
Устройство для магнитной очисткижидКОСТи 1979
  • Куликов Алексей Дмитриевич
  • Макаров Виктор Николаевич
SU845853A1
Устройство для очистки жидкостей от ферромагнитных частиц 1990
  • Булыжев Евгений Михайлович
  • Трощий Анаида Рачиковна
  • Богданов Виктор Викторович
  • Решетников Юрий Андреевич
  • Прокофьев Вячеслав Михайлович
  • Вельмисов Петр Александрович
SU1755929A1
УСТРОЙСТВО ДЛЯ ОЧИСТКИ ЖИДКОСТЕЙ ОТ ФЕРРОМАГНИТНЫХ ЧАСТИЦ 1992
  • Мушаров Ю.В.
  • Булыжев Е.М.
  • Трощий А.Р.
  • Прокофьев В.М.
RU2027473C1
УСТРОЙСТВО ДЛЯ ОЧИСТКИ ЖИДКОСТЕЙ ОТ ФЕРРОМАГНИТНЫХ ЧАСТИЦ 1996
  • Булыжев Евгений Михайлович
  • Смирнов Анатолий Алексеевич
RU2097107C1
DE 3600607 А1, 22.11.1986
DE 4130421 А1, 11.03.1993
Способ монтажа полупроводниковых кристаллов в корпус 2019
  • Москалёв Геннадий Яковлевич
  • Фёдоров Дмитрий Геннадьевич
  • Ревко Герман Николаевич
RU2710005C1

RU 2 186 628 C1

Даты

2002-08-10Публикация

2001-04-26Подача