РЕАКТИВНЫЙ ДВИГАТЕЛЬ Российский патент 2002 года по МПК F02K9/80 

Описание патента на изобретение RU2187011C2

Изобретение относится к реактивной технике, в частности к устройствам для создания тяги в любых типах реактивных двигателей.

Известно устройство (см. кн.: А.Л.Клячкин. Теория воздушно-реактивных двигателей. - М.: Машиностроение, 1969, стр. 17-18, рис.1,5-а,б).

Турбореактивный двигатель (ТРД) (рис.1,5 а) представляет собой простейший тип авиационного ГТД. Основными конструктивными элементами его являются входное устройство В, многоступенчатый осевой компрессор (одно- и двухваловый) К с развитой механизацией и системной регулирования, камера сгорания КС, чаще всего кольцевого типа, с индивидуальными жаровыми трубами и фокусниками для организации эффективного сжигания топлива, одно- или двухступенчатая осевая турбина Т и реактивное сопло РС. При необходимости кратковременного увеличения (формирования) тяги двигателя за турбиной ТРДФ устанавливают переходный диффузор Д и форсажную камеру ФК (см. рис.1,5 б). Недостатки: невозможно получить более высокую тягу за счет соплового насадка.

Наиболее близким техническим решением из известных является описание изобретения к патенту US 2468787, МПК В 64 С 23/00, 1949, (прототип).

Устройство для получения аэродинамической подъемной силы (силы тяги) содержит камеру сгорания, турбину, выходную трубу, центральное тело, кольцевой диффузор, образованный кольцевыми плоскостями центрального тела и выходной трубы, в котором частично находятся кольцевые аэродинамические профили (кольцевые усеченные полусферы), вогнутые стороны которых обращены к кольцевому диффузору, а выпуклые наружу, кольцевые сопла, образованные:
верхнее кольцевое сопло образовано между торцевой частью рассекающего конуса и передней кромкой верхней плоскости кольцевой усеченной полусферы,
нижнее кольцевое сопло - между задней кромкой кольцевой усеченной полусферы 1 и передней кромкой верхней плоскости нижней кольцевой усеченной полусферы.

Однако в данном случае невозможно получить более высокую тягу (подъемную силу), сопоставимую с нашим изобретением, за счет зоны пониженного давления, образующейся на выпуклых сторонах кольцевых усеченных полусфер - в силу низкой плотности и высокой температуры газа, истекающего из турбины. Сама конструкция приемной камеры кольцевого диффузора приводит к увеличению поперечного сечения двигателя в несколько раз, что приводит к большим затруднениям применения его в традиционных типах авиационной техники в силу возрастания лобового сопротивления и компенсирования этим сопротивлением того прироста силы тяги, который получался этим устройством.

Технический результат - повышение силы тяги за счет образования газодинамической подушки, незначительное увеличение поперечного сечения двигателя по сравнению с традиционно применяемыми реактивными двигателями.

Эта проблема решается посредством устройства, содержащего камеру сгорания, за которой установлена турбина, выходная труба, торец которой выполнен по кривой в противоположную сторону от оси двигателя, центральное тело в виде рассекающего конуса, кольцевое сопло, кольцевую усеченного полусферу, причем кольцевое сопло образованно между торцами рассекающего конуса и выходной трубы, а с внешней стороны выходной трубы установлена кольцевая усеченная полусфера, вогнутая сторона которой обращена к кольцевому соплу 6.

Такое сочетание конструктивных элементов и взаимосвязь между ними дает возможность решения поставленной задачи - увеличение силы тяги и недопущения чрезмерного увеличения поперечного сечения двигателя.

Образовавшиеся продукты сгорания из камеры сгорания с высоким давлением и температурой обтекают тело, выполненное в виде рассекающего конуса, который рассекает продукты сгорания по периметру и подает их в кольцевое сопло, где они (продукты сгорания) разгоняются до больших скоростей, через выходное сечение кольцевого сопла тонкой струйкой попадают на вогнутую сторону кольцевой усеченной полусферы и описывают ее по периметру, сжимаются вследствие большой центробежной силы, причем из-за этой центробежной силы в процессе обтекания не могут расширится в сторону центра кривизны кольцевой усеченной полусферы, продукты сгорания, сжатые до большого давления центробежной силы, движутся по вогнутой стороне кольцевой усеченной полусферы, образуя на ее поверхности газодинамическую подушку, с давлением газа в ней от нескольких атмосфер до нескольких десятков атмосфер.

Таким образом взаимодействие газодинамической подушки на вогнутую сторону кольцевой усеченной полусферы образует вектор силы тяги в пять-шесть раз больше вектора силы тяги кольцевого сопла.

На чертеже показан реактивный двигатель в разрезе.

Реактивный двигатель, содержащий камеру сгорания 1, за которой установлена турбина 2, выходная труба 3, центральное тело, выполненное в виде рассекающего конуса 4, кольцевое сопло 6, кольцевую полусферу 8, причем кольцевое сопло 6 образовано между торцами 11, 5 рассекающего конуса 4 и выходной трубы 3, а с внешней стороны выходной трубы 3 установлена кольцевая усеченная полусфера 8, вогнутая сторона 9 которой обращена к кольцевому соплу 6. Продукты сгорания тонкой струйкой обтекают вогнутую сторону 9 кольцевой усеченной полусферы 8, образуя газодинамическую подушку 10. 11 - торец рассекающего конуса 4, 12 - хорда кольцевой усеченной полусферы 8.

Пример конкретного выполнения и работы реактивного двигателя.

Устройство работает следующим образом. Продукты сгорания при работе реактивного двигателя истекают через кольцевое сопло 6, образованное посредством торца 5 выходной трубы 3 и торца 11 рассекающего конуса 4, где с внешней стороны выходной трубы 3 установлена кольцевая усеченная полусфера 8, вогнутая сторона 9 которой обращена к кольцевому соплу 6.

Далее продукты сгорания со скоростью 50-800 м/с струйкой обтекают вогнутую сторону 9 кольцевой усеченной полусферы 8, образуя на ее вогнутой стороне 9 газодинамическую подушку 10, за счет центробежной силы, возникающей в результате движения продуктов сгорания по вогнутой стороне 9 кольцевой усеченной полусферы 8. Взаимодействие газодинамической подушки с вогнутой стороной 9 кольцевой усеченной полусферы 8 дает образование силы тяги, которая превышает в пять-шесть раз силу тяги кольцевого сопла 6.

Продукты сгорания, двигаясь со скоростью 50-800 м/с и выше вдоль вогнутой поверхности кольцевой усеченной полусферы, сжимаются под действием центробежной силы, образуя газодинамическую подушку с давлением в ней от 3 до 15 атм.

Газодинамическая подушка, взаимодействуя с кольцевой усеченной полусферой 8, образует силу тяги, которая в пять-шесть раз больше по величине силы тяги, возникающей в кольцевом сопле 6, и зависит от радиуса кривизны и площади кольцевой усеченной полусферы, а также от угла атаки между струйкой газа и хордой 12 кольцевой усеченной полусферы, и от скорости истечения и сечения струйки продуктов сгорания. В реактивном двигателе можно использовать несколько ступеней пар "кольцевое сопло - кольцевая усеченная полусфера". Разница между силой тяги кольцевой усеченной полусферы и проекцией силы тяги кольцевого сопла на ось двигателя будет равна результирующей силе, которая будет приводить в движение летательный аппарат.

Похожие патенты RU2187011C2

название год авторы номер документа
УСТРОЙСТВО ВИХРЕВОГО ГАЗОВОГО КОМПРЕССОРА ДЛЯ КОМБИНИРОВАННОГО ВОЗДУШНО-РЕАКТИВНОГО ДВИГАТЕЛЯ 2019
  • Фролов Михаил Петрович
RU2766496C2
СПОСОБ СОЗДАНИЯ ТЯГИ И СИЛОВАЯ УСТАНОВКА ДЛЯ ЕГО РЕАЛИЗАЦИИ 2017
  • Юриков Евгений Петрович
  • Андреев Владимир Иванович
RU2680214C1
СПОСОБ ОРГАНИЗАЦИИ РАБОЧЕГО ПРОЦЕССА В ПРЯМОТОЧНОМ ВОЗДУШНО-РЕАКТИВНОМ ДВИГАТЕЛЕ С НЕПРЕРЫВНО-ДЕТОНАЦИОННОЙ КАМЕРОЙ СГОРАНИЯ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2019
  • Фролов Сергей Михайлович
  • Иванов Владислав Сергеевич
  • Набатников Сергей Александрович
  • Зангиев Алан Эльбрусович
  • Авдеев Константин Алексеевич
  • Звегинцев Валерий Иванович
  • Шулакова Надежда Сергеевна
RU2714582C1
КОМБИНИРОВАННЫЙ ДВИГАТЕЛЬ ПУСТЫНЦЕВА 1993
  • Пустынцев Александр Алексеевич
RU2094621C1
ПУЛЬСИРУЮЩИЙ ГАЗОТУРБИННЫЙ ДВИГАТЕЛЬ 2003
  • Костюков Владимир Николаевич
RU2311555C2
ГАЗОТУРБИННЫЙ ДВИГАТЕЛЬ 2007
  • Коминов Виталий Иванович
RU2338906C1
ТУРБОРЕАКТИВНЫЙ ДВИГАТЕЛЬ 2004
  • Гойхенберг Михаил Михайлович
  • Марчуков Евгений Ювенальевич
  • Тарасов Александр Иванович
  • Привалов Виталий Николаевич
RU2277181C2
КОМПЛЕКС ДЛЯ РЕАКТИВНОГО ПОЛЕТА 2008
  • Артамонов Александр Сергеевич
  • Артамонов Евгений Александрович
RU2387582C2
СПОСОБ СОЗДАНИЯ РЕАКТИВНОЙ ТЯГИ И ТУРБОРЕАКТИВНЫЙ ДВИГАТЕЛЬ ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2004
  • Кочетков Б.Ф.
RU2259493C1
ДВУХКОНТУРНЫЙ ГАЗОТУРБИННЫЙ ВЕНТИЛЯТОРНЫЙ ДВИГАТЕЛЬ 2006
  • Агафонов Юрий Михайлович
  • Брусов Владимир Алексеевич
  • Брусова Татьяна Сергеевна
  • Агафонов Николай Юрьевич
  • Аблаева Екатерина Яковлевна
  • Беломестнов Эдуард Николаевич
  • Великанова Нина Петровна
  • Гайфуллина Раиса Аглиевна
  • Жильцов Евгений Изосимович
  • Жиляев Игорь Николаевич
  • Закиев Фарит Кавиевич
  • Кадыров Раиф Ясовиевич
  • Корноухов Александр Анатольевич
  • Кузнецов Николай Ильич
  • Кокорин Владимир Анатольевич
  • Куринный Владимир Сергеевич
  • Мокшанов Александр Павлович
  • Муртазин Габбас Зуферович
  • Семенова Тамара Анатольевна
  • Симкин Эдуард Львович
  • Тумреев Валерий Иванович
  • Тонких Светлана Юрьевна
  • Ширяев Станислав Федорович
  • Хрунина Нина Ивановна
  • Исаков Ренат Григорьевич
  • Исаков Динис Ренатович
RU2320885C2

Реферат патента 2002 года РЕАКТИВНЫЙ ДВИГАТЕЛЬ

Изобретение относится к реактивной технике, в частности для создания тяги в двигательных установках. Реактивный двигатель содержит камеру сгорания, за которой установлена турбина, выходную трубу, центральное тело, выполненное в виде рассекающего конуса, кольцевое сопло, кольцевую усеченную полусферу, кольцевое сопло образовано между торцами рассекающего конуса и выходной трубы. С внешней стороны выходной трубы установлена кольцевая усеченная полусфера, вогнутая сторона которой обращена к кольцевому соплу. Торец выходной трубы выполнен по кривой в противоположную сторону от оси двигателя. Изобретение позволяет увеличить тягу двигателя за счет создания газодинамической подушки. 1 ил.

Формула изобретения RU 2 187 011 C2

Реактивный двигатель, содержащий камеру сгорания, за которой установлена турбина, выходную трубу, торец которой выполнен по кривой в противоположную сторону от оси двигателя, центральное тело в виде рассекающего конуса, кольцевое сопло, кольцевую усеченную полусферу, отличается тем, что кольцевое сопло образовано между торцами выходной трубы и рассекающего конуса, а с внешней стороны выходной трубы установлена кольцевая усеченная полусфера, вогнутая сторона которой обращена к кольцевому соплу.

Документы, цитированные в отчете о поиске Патент 2002 года RU2187011C2

ЖИДКИЕ КОМПОЗИЦИИ ФЕНИЛЭФРИНА С ПОВЫШЕННОЙ СТАБИЛЬНОСТЬЮ 2007
  • Бабнис Вильям
  • Шилд Стефани
  • Хосковец Гейл П.
RU2468787C2
US 3297278 A, 10.01.1967
КОМБИНИРОВАННАЯ КАМЕРА ПУЛЬСИРУЮЩЕГО ДВИГАТЕЛЯ ДЕТОНАЦИОННОГО ГОРЕНИЯ 1993
  • Поршнев В.А.
  • Федорец О.Н.
  • Сорокин В.Н.
RU2080466C1
RU 94031235 A1, 10.08.1996
US 3774398 A, 27.11.1973
Устройство для экстренного останова автомобиля 1983
  • Кастнер Гюнтер
  • Древс Клаус
  • Шеве Петер
  • Грунерт Фритц
SU1262076A1
УСТРОЙСТВО ДЛЯ ВИХРЕТОКОВОГО КОНТРОЛЯ ДИНАМИЧЕСКИХ ПАРАМЕТРОВ 2000
  • Запускалов В.Г.
  • Маслов А.И.
  • Редькин В.И.
  • Егиазарян А.В.
RU2180299C1

RU 2 187 011 C2

Авторы

Быковский В.И.

Черных В.Н.

Даты

2002-08-10Публикация

2000-07-20Подача