Изобретение относится к измерительной технике, в частности к измерению влажности капиллярно-пористых материалов.
Существует способ измерения влажности капиллярно-пористых материалов [Лапшин А.А. Электрические влагомеры. - М.: Госэнергоиздат, 1960, с. 15-20], где в качестве параметра, по которому определяют влажность, используется дифференциальное электрическое сопротивление пробы материала. Способ заключается в определении электрического сопротивления пробы материала на постоянном токе при одном фиксированном напряжении.
Недостатками этого способа являются: низкая точность измерений вследствие зависимости электрического сопротивления пробы материала от приложенного напряжения, высокое напряжение для ухода на линейный более крутой участок характеристики и узость диапазона измерения вследствие фиксации напряжения.
Известен способ [Берлинер М.А. Измерения влажности. - М.: Энергия, 1973, с. 52-54] , заключающийся в осуществлении контакта с образцом с помощью четырех электродов, расположенных вдоль линии, на фиксированном расстоянии друг от друга. Через внешние электроды, пропускают постоянный ток, а между внутренними измеряют напряжение, по которым определяют удельное объемное сопротивление материала и влажность.
Недостатками этого способа являются: низкая точнос ть измерений вследствие зависимости электрического сопротивления пробы материала от пропускаемого тока, электроды должны быть удалены от всех поверхностей материала, кроме исследуемой, среда должна быть полубесконечной.
За прототип принят способ [Берлинер М.А. Электрические измерения, автоматический контроль и регулирование влажности. - М.-Л.: Энергия, 1965, с. 87] , заключающийся в измерении электрического сопротивления на поддиапазонах. Для этого измеряют электрическое сопротивление пробы материала в диапазоне 21-28% на напряжении 27 В, а 10-22% на напряжении 80 В.
Недостатками прототипа являются: низкая точность измерений, вызванная не учетом нелинейности ВАХ, высокие напряжения, расхождение показаний влажности на перекрывающихся поддиапазонах.
Общими недостатками способов являются: низкая точность измерения электрического сопротивления и как следствие влажности капиллярно-пористого материала, вызванная нелинейностью вольтамперной характеристики (ВАХ) пробы, а также применение высокого напряжения, требующее применения дополнительных мер защиты от поражения электрическим током.
Технической задачей способа являются повышение точности и расширение диапазона контроля при заданных метрологических характеристиках.
Поставленная техническая задача достигается тем, что:
1. В способе определения влажности древесины, заключающемся в том, что осуществляют контакт с образцом с помощью двух электродов, расположенных вдоль линии, перпендикулярной волокнам образца, на фиксированном расстоянии друг от друга, прикладывают напряжение на измерительную ячейку, состоящую из последовательно включенных влажного материала и эталонного сопротивления, измеряют ток за счет падения напряжения на эталонном сопротивлении и определяют влажность, в отличие от прототипа изменяют напряжение кратно двум от первоначального и измеряют второй ток, по двум напряжениям и токам находят диффузионную проводимость образца, по которой определяют влажность.
2. Способ определения влажности через диффузионную проводимость, отличающийся тем, что определяют влажность на одной из границ диапазона через диффузионную проводимость сухого вещества материала, определенную на образце материала с эталонным содержанием влаги.
3. Способ определения влажности через диффузионную проводимость на одной из границ диапазона, отличающийся тем, что проводят дополнительные измерения на втором материале с эталонным содержанием влажности другой границы диапазона, из данных, полученных на эталонах, определяют калибровочные коэффициенты, и определяют искомую влажность образца на калиброванном диапазоне, регламентируемом первым и вторым эталонами.
Сущность предлагаемого способа поясняется на фиг.1 - 4. Предлагаемый способ включает три этапа:
1) измерение диффузионной проводимости исследуемого образца;
2) определение влажности по диффузионной проводимости сухого вещества на первом эталоне с известной влажностью на одной из границ диапазона;
3) калибровка искомой влажности материала за счет измерения влажности на втором эталоне с известной влажностью другой границы диапазона.
1. Влажность древесины определяют за счет измерения диффузионной проводимости исследуемого образца. Для этого осуществляют контакт с образцом с помощью двух электродов, расположенных вдоль линии, перпендикулярной волокнам образца, на фиксированном расстоянии друг от друга. Прикладывают напряжение U1 на измерительную ячейку, состоящую из последовательно включенных влажного материала и эталонного сопротивления (фиг.1), измеряют ток I1 (фиг. 2) за счет падения напряжения на эталонном сопротивлении. Затем изменяют напряжение U кратно двум от первоначального U2=2U1 и измеряют второй ток I2. По двум напряжениям U1, U2 и токам I1, I2 с помощью вольтамперной характеристики (ВАХ) находят (фиг.1) диффузионную проводимость Yd образца.
ВАХ пробы имеет нелинейный характер, а ток изменяется по экспоненциальному закону (фиг.1):
где I - текущее значение тока через пробу материала, U - приложенное напряжение на пробе материала, Id - ток, обусловленный диффузией ионов через мембраны клеток (диффузионный ток), Ud - падение напряжения на пробе материала, вызванное диффузией ионов через мембраны клеток (ЭДС, соответствующая диффузионному току).
Уникальным свойством, заключающимся в том, что вне зависимости от условий проведения эксперимента постоянством, отражающим характер вольтамперной зависимости, обладает диффузионное сопротивление Rd (или проводимость Yd= l/Rd), которое является информативным параметром влажности материала.
Диффузионное сопротивление Rd можно определить по ВАХ из системы уравнений:
для токов I1, I2:
или напряжений U1, U2:
Поделив одно выражение на другое с учетом кратности напряжений U2/U1=2, находим:
После несложных математических преобразований получаем выражение для определения Id:
Определим Ud, подставив (5) в первое выражение системы (4)
упростив выражение, находим
Запишем выражение для расчета информативного параметра Rd, подставив полученные выражения (5) и (6) в (2):
Принимая во внимание, что U1/I1= R1, дифференциальное сопротивление первого измерения находим выражение для определения диффузионною сопротивления Rd
где I12 - отношение токов
Из графика (фиг.3) видно, что диффузионное сопротивление Rd не зависит от приложенного на пробу напряжения U, но является информативным параметром от влажности W (фиг.4).
2. Определение влажности по диффузионной проводимости на первом эталоне с известной влажностью на одной из границ диапазона.
Модель влажного материала определяет связь влаги и проводимости пробы материала. Влага, проникающая в пробу, обволакивает, проходя по капиллярам, структурные компоненты материала и вызывает увеличение проводимости. Измерительный ток от приложенного на пробу напряжения проходит как по влаге, так и по структурным компонентам, что соответствует делителю тока, состоящему из двух параллельно включенных проводимостей (фиг.1). При этом ток через влагу будет определяться диффузионным сопротивлением, а через структурные компоненты - диффузионным сопротивлением сухого материала.
Таким образом, влажность по аналогии с весовым методом будет определяться выражением:
где Rd, Rm - диффузионное сопротивление влажного и сухого материала.
Диффузионную проводимость сухого материала Ym=l/Rm определяют на образце с эталонным содержанием влаги. По диффузионной проводимости сухого вещества материала, корректируют влажность исследуемого вещества на одной из границ диапазона.
Корректируют влажность Wi на границе диапазона W01 через найденную диффузионную проводимость Ym сухого вещества.
Поделив одно уравнение на другое
где W1 - скорректированное значение влажности, Y01 - диффузионная проводимость пробы с известной влажностью W01.
Зависимость влажности W(Rd), полученная на базе весового метода [Берлинер М. А. Измерения влажности. - M.: Энергия, 1973, с.26-27] (фиг.4), адекватна предлагаемому способу, при этом погрешность не превышает 5% на высоких влажностях.
3. Калибровка искомой влажности материала за счет измерения влажности на втором эталоне с известной влажностью другой границы диапазона. Для этого проводят дополнительные измерения на втором материале с эталонным содержанием влажности другой границы диапазона, из данных, полученных на эталонах, определяют калибровочные коэффициенты, и определяют искомую влажность образца на калиброванном диапазоне, регламентируемом первым и вторым эталонами.
Задачей калибровки является нахождение зависимости или такой системы координат, при которых функциональная связь измеренной на серии образцовых материалов влажности и истинных значений их влажности будет линейной. Калибровка измеренной влажности позволяет устранить как статические (аддитивные), так и динамические (мультипликативные) составляющие погрешности.
где W01, W02 - эталонные значения влажности, соответствующие границам диапазона, W1, W2 - значения влажности, рассчитанные по модели делителя для материала с эталонным содержанием влаги соответственно.
Из системы уравнений (10), составленной на базе экспериментальных данных (W01, W02, W1, W2) для контролируемой породы материала, определяются калибровочные коэффициенты a0, a1.
Зная значения коэффициентов, определяют значение искомой влажности для пробы материала в заданном диапазоне W01-W02:
W = a0 + a1 • Wx (11)
где W - определяемое значение влажности, Wx - рассчитанное по модели делителя значение влажности.
Докажем эффективность по отношению к прототипу.
1) Эффективность по точности
Для доказательства эффективности определим погрешности, возникающие при нахождении влажности по дифференциальной и диффузионной проводимости Y0:
а) диффузионная проводимость:
где изменение тока при изменении напряжения с U1 до U2,
дифференциальная проводимость при напряжении U1 в первой точке эксперимента;
б) дифференциальная проводимость
В аналогах и прототипе измеряют проводимость без учета ВАХ при различных напряжениях, например U1 или U2, поэтому во второй точке эксперимента отличается от Y1 и не соответствует диффузионной проводимости Y0, которая не зависит от приложенного напряжения.
Качественно эффективность можно оценить по фиг.3, где видно, что диффузионное сопротивление R0= 1/Y0 не зависит от приложенного на пробу материала напряжения, а дифференциальное сопротивление Ri=1/Yi изменяется в несколько раз по сравнению с первым значением.
Оценить количественно можно следующим образом.
Эффективность по точности в первой точке эксперимента:
Эффективность во второй точке эксперимента:
Результаты вычисления ηY1 и ηY2, Y и Y0 по измеренным значениям I1, I2, U1, U2 приведены в таблице.
Дифференциальная проводимость Y в первом опыте составила 4,94Е-8, а диффузионная проводимость Y0-4,4Е-8. Во втором опыте Y увеличилась до 5,57Е-8, Y0 при этом не изменилась. Следовательно, исходя из полученного результата можно сделать вывод о том, что эффективность по точности повышается в 1,1-1,3 раза.
2) Эффективность по расширению диапазона контроля
В прототипе диапазон контроля ограничен нелинейностью ВАХ и регламентирован выбором напряжения на линейном участке характеристики (только высокие напряжения). Диапазон ΔW1 составлял 12% влажности (W=10-22%) и ΔW2=7% влажности (ΔW =21-28%), т.е. 19% на двух поддиапазонах ΔW1и ΔW2. По диффузионному сопротивлению без разбиения на поддиапазоны исследован один диапазон W=10-29%, соответственно ΔW =19%.
где n - число поддиалазонов.
Подставляя числовые значения, находим
Следовательно, диапазон измерения влажности увеличился в 2,1 раза.
3) Эффективность по безопасности
Контроль дифференциального сопротивления производился на высоких напряжениях 27-80 В. Теперь по предложенному способу стало возможным проводить измерения на нелинейном участке вольтамперной характеристики пробы материала при напряжениях 1-10 В, что делает использование прибора безопасным, и, как известно [Берлинер М.А. Электрические измерения, автоматический контроль и регулирование влажности. -М. -Л. : Энергия, 1965, с.59], уменьшает эффект поляризации.
Эффективность понижения напряжения
где U' - напряжение, на котором производился контроль дифференциального сопротивления пробы; U - напряжение, на котором производится контроль диффузионного сопротивления.
Следовательно эффективность по безопасности повышается в 2,7-80 раз.
Реализация предлагаемого способа осуществлена измерительно-вычислительной системой "ТЕМП-281" определения влажности, построенной на базе персонального компьютера "Спектрум" с микропроцессором Z80.
Результаты экспериментов проведенных на измерительно-вычислительной системе определения влажности представлены на фиг.2,3,4. Из графиков видно, что предлагаемый способ позволяет определить искомую величину диффузионного сопротивления и влажность в заданном диапазоне с регламентируемой точностью контроля.
Таким образом, предлагаемый способ, в отличие от известных решений позволяет повысить точность в 1,1-1,3 раза, уменьшить измерительное напряжение на ячейке в 2,7-80 раз и расширить диапазон контроля не менее чем в 2,1 раза при фиксированной точности измерения.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ДЛЯ ОПРЕДЕЛЕНИЯ ВЛАЖНОСТИ ДРЕВЕСИНЫ | 2002 |
|
RU2240545C2 |
СПОСОБ ОПРЕДЕЛЕНИЯ ВЛАЖНОСТИ КАПИЛЛЯРНО-ПОРИСТЫХ МАТЕРИАЛОВ | 2003 |
|
RU2240546C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕМПЕРАТУРЫ ПОЛУПРОВОДНИКОВЫМ ТЕРМОРЕЗИСТОРОМ | 2003 |
|
RU2249798C2 |
СПОСОБ ОПРЕДЕЛЕНИЯ ВЛАЖНОСТИ КАПИЛЛЯРНО-ПОРИСТЫХ МАТЕРИАЛОВ | 2007 |
|
RU2341788C1 |
СПОСОБ И УСТРОЙСТВО ОПРЕДЕЛЕНИЯ ВЛАЖНОСТИ ПО ВОЛЬТ-АМПЕРНОЙ ХАРАКТЕРИСТИКЕ МАТЕРИАЛОВ | 2008 |
|
RU2374633C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ВОЛЬТ-АМПЕРНОЙ ХАРАКТЕРИСТИКИ КОНТАКТА ИНСТРУМЕНТ-ИЗДЕЛИЕ | 2001 |
|
RU2211748C2 |
СПОСОБ ИДЕНТИФИКАЦИИ КОМПЛЕКСА ТЕПЛОФИЗИЧЕСКИХ ХАРАКТЕРИСТИК ТВЕРДЫХ МАТЕРИАЛОВ | 2004 |
|
RU2263306C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ВЛАЖНОСТИ ДРЕВЕСИНЫ | 2012 |
|
RU2504759C1 |
СПОСОБ И УСТРОЙСТВО ОПРЕДЕЛЕНИЯ ВЛАЖНОСТИ ДРЕВЕСИНЫ ПО ИМПУЛЬСНОЙ ДИНАМИЧЕСКОЙ ХАРАКТЕРИСТИКЕ | 2008 |
|
RU2375704C1 |
Способ неинвазивного определения концентрации глюкозы в крови по глюкограмме | 2016 |
|
RU2644501C2 |
Изобретение относится к измерительной технике, в частности к измерению влажности капиллярно-пористых материалов. Техническим результатом способа является повышение точности и расширение диапазона контроля при заданных метрологических характеристиках. Способ заключается в том, что осуществляют контакт с образцом с помощью двух электродов, расположенных вдоль линии, перпендикулярной волокнам образца, прикладывают напряжение к измерительной ячейке, состоящей из измеряемого образца и эталонного сопротивления, затем изменяют напряжение кратно двум от первоначального и измеряют второй ток, по двум напряжениям и токам находят диффузионную проводимость образца, по которой определяют влажность. 1 табл., 4 ил.
Способ определения влажности древесины, заключающийся в том, что осуществляют контакт с образцом с помощью двух электродов, расположенных вдоль линии, перпендикулярной волокнам образца, на фиксированном расстоянии друг от друга, прикладывают напряжение на измерительную ячейку, состоящую из последовательно включенных влажного материала и эталонного сопротивления, измеряют ток за счет падения напряжения на эталонном сопротивлении и определяют влажность, отличающийся тем, что изменяют напряжение кратно двум от первоначального и измеряют второй ток, по двум напряжениям и токам находят диффузионную проводимость образца, по которой определяют влажность, причем влажность определяют на одной из границ диапазона через диффузионную проводимость сухого вещества материала, измеренную на образце материала с эталонным содержанием влаги, проводят дополнительные измерения на втором материале с эталонным содержанием влажности другой границы диапазона, из данных, полученных на эталонах, определяют калибровочные коэффициенты и определяют искомую влажность образца на калиброванном диапазоне, регламентируемом первым и вторым эталонами.
БЕРЛИНЕР М.А | |||
Электрические измерения, автоматический контроль и регулирование влажности | |||
- М.-Л.: Энергия, 1965, с.87 | |||
ВЛАГОМЕР ПИЛОМАТЕРИАЛОВ В ШТАБЕЛЕ | 1992 |
|
RU2042130C1 |
Кондуктометрический измеритель влажности древесины | 1990 |
|
SU1804621A3 |
JP 11258190 А, 24.09.1999. |
Авторы
Даты
2002-08-10—Публикация
2000-06-15—Подача