СПОСОБ ОПРЕДЕЛЕНИЯ РАЗМЕРОВ ДИСПЕРСНЫХ ЧАСТИЦ Российский патент 2002 года по МПК G01N15/02 

Описание патента на изобретение RU2189027C1

Изобретение относится к измерительной технике, в частности к способам измерения размеров и концентрации дисперсных частиц, и может быть использовано в метрологии, химической технологии, при контроле загрязнения окружающей среды.

Известен способ определения размеров дисперсных частиц [Польский Ю.Е., Филипова Н. В. Способ измерения размеров микрочастиц. Заявка 93028121/25 по MKИ G 01 N 15/14, БИ 35, 1997г., с.54], в котором в счетном объеме формируют пространственно разделенные параллельные и наложенные одна на другую интерференционные картины с помощью излучений на нескольких длинах волн, выделяют сигналы рассеянного излучения от дисперсных частиц на каждой длине волны и проводят совокупный анализ формы сигналов, принятых на разных длинах волн, в результате чего определяют размеры дисперсных частиц.

Недостатком способа определения размеров дисперсных частиц является большая величина счетного объема, что ограничивает максимальное значение измеряемых концентраций.

Известен также способ определения размеров дисперсных частиц [Коломиец С. М. Фотоэлектрический счетчик аэрозолей со сканированием лазерным пучком. Измерительная техника. 1991.- 9,- с.43-45], в котором формируют пучок коллимированного излучения, выделяют по его сечению пучок меньшего размера, сканируют пучком меньшего размера по сечению исходного пучка, собирают поток рассеянного излучения, регистрируют временную зависимость его интенсивности, по которой определяют размеры дисперсных частиц.

Недостатком такого способа определения размеров дисперсных частиц является большая величина счетного объема, что ограничивает величину максимальной концентрации, при которой целесообразно использование способа.

Известен способ определения размеров дисперсных частиц [Боковиков А.Б. Способ идентификации объектов и устройство для его осуществления. Патент RU 2123176 по МПК G 01 N 21/25. БИ 34, 1998г.], выбранный в качестве прототипа, в котором формируют пучок коллимированного излучения широкого спектра, этот пучок пропускают через счетный объем, пучок коллимированного излучения, прошедший через счетный объем, пропускают через светофильтр, спектр пропускания которого имеет функциональную зависимость от координат точки в плоскости поперечного сечения светофильтра с полосой пропускания не уже ширины спектра используемого излучения, и анализируют спектральный состав прошедшего через такой фильтр пучка коллимированного излучения, из которого определяют размеры дисперсных частиц.

Недостатком такого способа определения размеров дисперсных частиц является большая величина счетного объема, что ограничивает величину максимальной концентрации дисперсных частиц, при которой возможно измерение.

Задачей изобретения является разработка способа определения размеров дисперсных частиц, использующего счетный объем с наименьшими размерами, а следовательно, предельно высокое значение максимальной концентрации дисперсных частиц, при которой возможно измерение их размеров.

Поставленная задача решается за счет того, что в способе определения размеров дисперсных частиц формируют коллимированный пучок излучения широкого спектра, этим пучком облучают счетный объем, выделяют пучок излучения, рассеянный на дисперсных частицах в счетном объеме, и проводят его спектральный анализ, из которого определяют размеры дисперсных частиц. Согласно изобретению коллимированный пучок излучения широкого спектра предварительно расщепляют на спектральные составляющие в виде веера пучков. Каждый пучок коллимированного монохроматического излучения фокусируют в счетном объеме на один из непрерывно следующих участков с размерами, равными величине пространственного разрешения. Веер пучков коллимированного монохроматического излучения формируют так, чтобы длины волн излучений, освещающих эти участки, не повторялись.

Положительный эффект достигается за счет того, что максимальная интенсивность пучков монохроматических излучений наблюдается в области перетяжки сфокусированного пучка, где каждый участок освещен лишь одним пучком монохроматического излучения. Счетный объем, ограниченный областью перетяжки пучков монохроматического излучений и выделяющийся спектральным контрастом каждого участка, имеет минимально возможное значение для используемой спектральной ширины пучка коллимированного излучения (определяемой значениями диаметров и требуемого разрешения). Поэтому верхний предел концентрации дисперсных частиц, при котором возможно измерение их диаметров, имеет максимальное значение.

На фиг. 1 приведена схема устройства, позволяющая реализовать предлагаемый способ. На фиг.2 приведен типичный вид спектра рассеянного из счетного объема излучения.

Устройство для определения размеров дисперсных частиц состоит из источника излучения широкого спектра 1, полосового фильтра 2, коллимирующего объектива 3, диспергирующего элемента 4, фокусирующего объектива 5, собирающего объектива 6, спектрографа 7 с линейкой фотоприемников 8, электронной аппаратуры 9 для определения размера дисперсной частицы 10, пересекающей в данный момент времени счетный объем 11.

В качестве источника излучения широкого спектра 1 может быть использована лампа накаливания, спектр которой можно корректировать с помощью полосового фильтра 2, составленного, например, из двух обрезающих фильтров, например, из цветного оптического стекла. В качестве коллимирующего объектива 3, фокусирующего объектива 5 и собирающего объектива 6 могут быть использованы объективы, выпускаемые серийно. В качестве диспергирующего элемента 4 может быть использована прямоугольная стеклянная призма среднего оптического качества. В качестве спектрографа 7 может быть использован также серийно выпускаемый спектрограф, у которого в плоскости выходной щели установлена линейка фотоприемников 8 (например, линейка фотоприемников со структурой с переносом заряда (ПЗС-линейка)) с числом элементов не менее числа выделяемых спектрографом 7 длин волн из спектра пучка коллимированного излучения. В качестве электронной аппаратуры 9 для определения размера дисперсной частицы 10, пересекающей в данный момент времени счетный объем 11, может быть использована ЭВМ, имеющая интерфейс связи с линейкой фотоприемников 8.

Устройство для определения размеров дисперсных частиц работает следующим образом. С помощью набора обрезающих фильтров из пучка излучения лампы накаливания выделяют участок спектра. Расходящийся пучок излучения полосового спектрального состава формируют в параллельный пучок с помощью коллимирующего объектива 3 и разлагают с помощью диспергирующего элемента 4 на спектральные составляющие. Из образованных таким образом веера коллимированных пучков монохроматических излучений в счетном объеме строят монохроматические изображения источника излучения с помощью фокусирующего объектива 5. Таким образом, формируют счетный объем с непрерывно следующими друг за другом и пространственно разделенными участками, освещаемые пучками излучения с разными длинами волн. Через счетный объем пропускают газодисперсный поток. Рассеянный на дисперсных частицах 10, пересекающих в данный момент времени счетный объем 11, поток излучения проецируют на входную щель спектрографа 7 при помощи собирающего объектива 6. При этом входную щель спектрографа 7 располагают так, чтобы направление входной щели совпадало с направлением дисперсии диспергирующего элемента 4. Проводят спектральный анализ потока рассеянного излучения. Диаметр дисперсной частицы определяют по числу длин волн пучков монохроматических излучений, следующих непрерывно в спектре потока рассеянного излучения.

При реализации способа использовались следующие комплектующие. Использовалась лампы накаливания 1 типа КГМ 12-100, из излучения которого формировали коллимированный пучок излучения непрерывного спектра диаметром 1 см. Коллимированный пучок излучения в спектральном интервале 0,54-0,63 формировали с помощью двух полосовых фильтров 2 типа СЗС-23 и ОС-12. В качестве диспергирующего элемента 4 использовали прямоугольную трехгранную призму из стекла К-8. В качестве фокусирующего 5 и собирающего 6 были использованы объективы Гелиос-44М со световым диаметром 29 мм и фокусным расстоянием 58 мм. При расстоянии 3 м между диспергирующим элементом 4 и фокусирующим объективом 5 длина виртуальной линейки составляла 1 см. Для спектрального анализа потока рассеянного излучения использовался двойной монохроматор МДР-1 с дифракционной решеткой, имеющей 1200 штрихов на 1 мм, в плоскости выходной щели которого устанавливали линейку ПЗС типа К1200ЦЛ1, сигналы которого обрабатывали с помощью ЭВМ. На входную щель монохроматора МДР-1 строили изображение счетного объема с увеличением в 1,8 раза.

При анализе гранулометрического состава металлического порошка железа был получен спектр рассеянного излучения, приведенный на фиг.2, из которого следует, что в момент времени регистрации спектра рассеянного излучения в счетном объеме находились две дисперсные частицы. Из этого спектра диаметры дисперсных частиц могут быть определены путем использования пропорции:

Здесь Δλ, нм - ширина спектра используемого излучения;
L, см - длина отсчетного устройства;
δλ, нм - ширина участка спектра рассеянного излучения, имеющего повышенную мощность;
dч, см - диаметр дисперсной частицы.

Используя пропорцию (1) для участков спектра шириной 0,7 нм и 0,5 нм (см. фиг. 2), определяем диаметры дисперсных частиц: 78 мкм и 55 мкм соответственно.

Относительная погрешность определения диаметров дисперсных частиц рассчитывается соотношением:

где Fф, см - фокусное расстояние фокусирующего объектива;
λi, см - длина волны излучения отсчетного устройства в месте прохождения дисперсной частицы;
Dk, см - диаметр пучка коллимированного излучения;
Δdч, см - абсолютная погрешность определения диаметра дисперсной частицы;
dф, см - диаметр фокального пятна пучка монохроматического излучения.

Относительная погрешность определения диаметров дисперсных частиц в области его значений 60 мкм, пролетающих через область отсчетного устройства, засвеченной излучением с длиной волны ~0,6 мкм, не превышает величины 5,8%.

Похожие патенты RU2189027C1

название год авторы номер документа
СПОСОБ ФОРМИРОВАНИЯ СЧЕТНОГО ОБЪЕМА ДЛЯ ИЗМЕРЕНИЯ СКОРОСТИ МИКРОННЫХ И СУБМИКРОННЫХ ДИСПЕРСНЫХ ЧАСТИЦ 2000
  • Мышкин В.Ф.
  • Власов В.А.
  • Литкевич А.В.
RU2184379C1
СПОСОБ ОПРЕДЕЛЕНИЯ ДИСПЕРСНОСТИ АЭРОЗОЛЬНЫХ ЧАСТИЦ 2003
  • Мышкин В.Ф.
  • Цимбал В.Н.
  • Борисов В.А.
  • Вдовин А.М.
RU2235990C1
УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ РАЗМЕРОВ ДИСПЕРСНЫХ ЧАСТИЦ 2003
  • Мышкин В.Ф.
  • Власов В.А.
  • Тихомиров И.А.
  • Чернов Д.Г.
RU2239173C1
СПЕКТРАЛЬНОЕ УСТРОЙСТВО 1996
  • Спирин Е.А.
  • Захаров И.С.
RU2094758C1
СПОСОБ ОПРЕДЕЛЕНИЯ МАЛОУГЛОВОЙ ИНДИКАТРИСЫ РАССЕЯНИЯ 2000
  • Мышкин В.Ф.
  • Тихомиров И.А.
  • Цимбал В.Н.
  • Иваненко Б.П.
RU2183828C1
СПОСОБ ОПРЕДЕЛЕНИЯ РАЗМЕРОВ НЕМАГНИТНЫХ ДИСПЕРСНЫХ ЧАСТИЦ С ПОМОЩЬЮ МАГНИТНОЙ ЖИДКОСТИ 2006
  • Диканский Юрий Иванович
  • Беджанян Марита Альбертовна
  • Закинян Артур Робертович
RU2310185C1
СПОСОБ МОДУЛЯЦИИ ИНТЕНСИВНОСТИ ИЗЛУЧЕНИЯ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ 1999
  • Захаров И.С.
  • Спирин Е.А.
  • Рыков Э.И.
RU2168155C2
СПОСОБ АТОМНО-АБСОРБЦИОННОГО СПЕКТРАЛЬНОГО АНАЛИЗА ЭЛЕМЕНТНОГО СОСТАВА ВЕЩЕСТВА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1998
  • Корепанов В.И.
  • Лисицын В.М.
  • Олешко В.И.
RU2157988C2
СПОСОБ ГРАДУИРОВКИ СПЕКТРА ОПТИЧЕСКОГО ИЗЛУЧЕНИЯ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ 1996
  • Спирин Е.А.
  • Захаров И.С.
RU2119649C1
Спектрометр 1985
  • Дятлов Вячеслав Лукич
  • Журавлев Петр Васильевич
  • Коняшкин Валериан Васильевич
  • Панькин Виктор Григорьевич
  • Потапов Борис Степанович
SU1368660A1

Иллюстрации к изобретению RU 2 189 027 C1

Реферат патента 2002 года СПОСОБ ОПРЕДЕЛЕНИЯ РАЗМЕРОВ ДИСПЕРСНЫХ ЧАСТИЦ

Изобретение относится к измерительной технике, в частности к способам измерения размеров и концентрации дисперсных частиц, и может быть использовано в метрологии, химической технологии. Формируют коллимированный пучок излучения широкого спектра, при помощи диспергирующего элемента расщепляют его на спектральные составляющие в виде веера пучков, которые фокусируют в счетном объеме. Это позволяет формировать счетный объем, каждая точка которого может быть однозначно идентифицирована по длине волны рассеянного на дисперсных частицах потока излучения. Техническим результатом является уменьшение размеров счетного объема. 2 ил.

Формула изобретения RU 2 189 027 C1

Способ определения размеров дисперсных частиц, заключающийся в том, что формируют пучок коллимированного оптического излучения широкого спектра, этим пучком облучают счетный объем, выделяют поток излучения, рассеянный на дисперсных частицах в счетном объеме и проводят его спектральный анализ, из которого определяют размеры дисперсных частиц, отличающийся тем, что коллимированный пучок излучения широкого спектра предварительно расщепляют на спектральные составляющие в виде веера пучков, каждый пучок коллимированного монохроматического излучения фокусируют в счетном объеме на один из непрерывно следующих участков с размерами, равными величине пространственного разрешения, а веер пучков коллимированного монохроматического излучения формируют так, чтобы длины волн излучений, освещающих эти участки, не повторялись.

Документы, цитированные в отчете о поиске Патент 2002 года RU2189027C1

РЕШЕТЧАТАЯ ПЛИТА ПОКРЫТИЯ 1992
  • Попов Александр Федорович
RU2046898C1
US 4361403 А, 30.11.1982
WO 8607455 А1, 18.12.1986
JP 63201554 А, 19.08.1988
Способ оптического анализа вирусных суспензий 1986
  • Ефимов Сергей Владиславович
  • Мищенко Борис Степанович
  • Коликов Всеволод Михайлович
  • Казанский Александр Дмитриевич
  • Безрукова Александра Геннадьевна
  • Молодкин Виктор Михайлович
  • Вострюхина Ольга Альбертовна
SU1467447A1

RU 2 189 027 C1

Авторы

Мышкин В.Ф.

Власов В.А.

Литкевич А.В.

Цимбал В.Н.

Даты

2002-09-10Публикация

2000-12-18Подача