ТЕПЛОВЫДЕЛЯЮЩАЯ СБОРКА Российский патент 2002 года по МПК G21C3/322 G21C3/352 

Описание патента на изобретение RU2192051C2

Это изобретение, в основном, относится к тепловыделяющим сборкам, в частности, относится к тепловыделяющей сборке, включающей отклоняющие лопатки для отклонения компонентов жидкостного потока, текущего мимо такой тепловыделяющей сборки типа, которая может быть использована в активных зонах ядерных энергетических реакторов.

Перед обсуждением состояния проблемы целесообразно сначала кратко описать конструкцию и работу типичного энергетического ядерного реактора, содержащего совокупность ядерных тепловыделяющих сборок. В этой связи энергетический ядерный реактор является устройством для производства тепла путем управляемого деления материала ядерного топлива, содержащегося в совокупности соседних тепловыделяющих стержней. Тепловыделяющие стержни объединены в пучки посредством совокупности дистанционирующих решеток, каждая из которых имеет открытые ячейки для прохождения через них каждого тепловыделяющего стержня и для достижения заданного расстояния (т.е. шага) между соседними тепловыделяющими стержнями. Кроме того, через другие открытые ячейки каждой решетки также проходят полые направляющие глухие трубки регулирующих стержней. В глухих трубках могут перемещаться посредством скольжения подвижные поглощающие или регулирующие стержни, способные управлять процессом деления.

Первый концевой участок и второй концевой участок каждой глухой трубки прикреплены к верхнему соплу и к нижнему соплу соответственно, чтобы обеспечить тепловыделяющей сборке жесткую конструктивную опору.

Совокупность тепловыделяющих стержней, направляющих глухих трубок, решеток, верхнего сопла и нижнего сопла обычно называют тепловыделяющей сборкой. Множество этих тепловыделяющих сборок группируют для образования активной зоны ядерного реактора, герметично закрытой внутри корпуса высокого давления реактора.

В процессе работы реактора поток жидкого замедлителя-охладителя (например, умягченная вода) вынуждают течь через корпус высокого давления и над топливными стержнями для содействия процессу деления и отбора тепла, получаемого при делении вещества ядерного топлива, содержащегося в каждом топливном стержне. В случае типового энергетического ядерного реактора, охлажденного водой под давлением, скорость потока охладителя, прокачиваемого над тепловыделяющими стержнями с помощью насосов охладителя реактора, может составлять примерно 18 футов в секунду (5,486 м/сек), чтобы обеспечить эффективный отбор тепла, выделяемого в процессе деления. Таким образом, тепло, выделяемое при делении вещества ядерного топлива, передается от каждого тепловыделяющего стержня и, следовательно, от каждой тепловыделяющей сборки жидкому замедлителю-охладителю, протекающему мимо топливных стержней. Тепло, передаваемое жидкому замедлителю-охладителю, в конечном счете переносится охладителем от корпуса высокого давления к турбогенератору, производящему электроэнергию известным в производстве электроэнергии способом. Как будет рассмотрено ниже, из соображений безопасности важно, чтобы охладитель эффективно отбирал тепло, выделяемое каждым тепловыделяющим стержнем. С этой целью нагретая поверхность каждого тепловыделяющего стержня должна находиться в контакте с охладителем, имеющим заданную среднюю объемную температуру охладителя.

Известно, что тепловой поток (т.е. скорость теплопередачи на единицу площади), текущий поперек нагретой поверхности топливного стержня, будет изменяться в зависимости от разности температур нагретой поверхности тепловыделяющего стержня и объема охладителя. Для оценки важности этой зависимости между тепловым потоком и разностью температур в процессе нижеследующих рассуждений приводится описание способа, при котором тепловой поток изменяется как функция разности температур нагретой поверхности тепловыделяющего стержня и объема охладителя. Таким образом, так как разность между температурой поверхности тепловыделяющего стержня и температурой объема охладителя может увеличиваться во время запуска реактора, тепло будет передаваться от нагретой поверхности к охладителю путем однофазной конвекции, вследствие чего увеличивается тепловой поток. Так как разность температур между температурой нагретой поверхности и средней температурой объема охладителя в дальнейшем возрастает, температура нагретой поверхности, вероятно, будет со временем превышать температуру насыщения (т. е. температуру насыщенного потока при давлении, существующем в активной зоне реактора), и на нагретой поверхности будут образовываться пузырьки пара, образуя на ней центры пузырькового кипения таким образом, что тепловой поток быстро возрастает. Тепловой поток будет максимальным, когда пузырьки станут достаточно плотными, чтобы соединиться и образовать паровую пленку на нагретой поверхности. Однако паровая пленка будет действовать как теплоизолятор, так как пары замедляют теплопередачу. Этот момент максимума теплового потока, при котором из нагретой поверхности образуется паровая пленка, обычно называют точкой кризиса теплоотдачи (DNB), которого следует избегать из соображений безопасности. Следовательно, если разность температур между температурой поверхности и температурой объема охладителя допускает даже незначительное превышение максимального теплового потока (DNВ), тепловой поток будет быстро и значительно уменьшаться даже при увеличении температуры нагретой поверхности. Паровая пленка на топливном стержне в этот момент становится неустойчивой в той смысле, что она попеременно разрывается и затем вновь образуется так, что происходит местное пленочное кипение. Если допустить дальнейшее увеличение разности температур между температурой поверхности и температурой объема охладителя, тепловой поток будет снова возрастать и возникнет устойчивое пленочное кипение паров. Однако, если большие тепловые потоки возникают одновременно с пленочным кипением (т.е. либо местным, либо устойчивым пленочным кипением), температура нагретой поверхности тепловыделяющего стрежня может стать достаточно высокой для того, чтобы произошло повреждение топливного стержня (так называемый "пережог"), и этого следует избегать из соображения безопасности. Следовательно, специалистам понятно, что если реактор набегает в таком режиме, что происходит пузырьковое кипение вблизи точки DNB, относительно небольшое увеличение теплового потока вызовет относительно быстрый переход к пленочному кипению, что может привести к "пережогу". Следовательно, для достижения максимального допустимого тепловыделения без риска повреждения тепловыделяющих стержней целесообразно эксплуатировать ядерный реактор так, чтобы наибольший тепловой поток был меньше максимального теплового потока, связанного с DNB.

Как упоминалось выше, пленка пузырьков пара может образоваться на нагретой поверхности и вызвать на ней кипение; однако паровая пленка будет действовать как теплоизолятор, так как пары замедляют теплопередачу и могут привести к DNB, что, в свою очередь, может привести к повреждению тепловыделяющего стержня. Тем не менее, желательно поддерживать пленку жидкого, по существу, однофазного охладителя на поверхности тепловыделяющего стержня с целью увеличения теплопередачи от тепловыделяющего стержня к охладителю при одновременном исключении DNB. Поэтому поддержание пленки жидкого, по существу, однофазного охладителя на поверхности тепловыделяющего стержня для увеличения теплопередачи от тепловыделяющего стержня к охладителю является проблемой в данной области техники.

Увеличение теплопередачи от тепловыделяющего стержня к охладителю при одновременном исключении DNB увеличивает максимально допустимый тепловой поток, полученный при заданном размере активной зоны реактора. Это желательно в связи с тем, что увеличивая максимальный допустимый тепловой поток, получаемый при заданном размере активной зоны реактора, увеличивают максимальную допустимую мощность, получаемую от активной зоны реактора. В этой связи, теплопередача от тепловыделяющего стержня к охладителю может быть увеличена за счет увеличения скорости потока охладителя над топливными стержнями. Однако увеличение скорости потока охладителя может потребовать больших и более дорогих насосов охладителя реактора. Поэтому еще одной проблемой в данной области техники является более эффективное увеличение теплопередачи от тепловыделяющего стержня к охладителю, не требующее больших и более дорогих насосов охладителя реактора.

Поддержание пленки жидкого, по существу, однофазного охладителя на поверхности тепловыделяющего стержня для увеличения теплопередачи от тепловыделяющего стержня к охладителю при исключении DNB способом, не требующим больших насосов охладителя, в последние годы приобрело дополнительное значение в связи с тем, что некоторые современные конструкции активной зоны реактора требуют, чтобы ранее упомянутые тепловыделяющие стержни были расположены скорее в виде более плотного массива с треугольными ячейками, нежели в виде более традиционного и менее плотного массива с квадратными ячейками. Поэтому в некоторых конструкциях активной зоны реактора тепловыделяющие сборки, содержащие тепловыделяющие стержни, могут иметь гексагональное поперечное сечение для получения приемлемого массива "плотной упаковки" с треугольными ячейками. Тепловыделяющие стержни, размещенные в массиве с треугольными ячейками, обеспечивают более высокую среднюю плотность потока от активной зоны реактора заданного размера по сравнению с тепловыделяющими стержнями, расположенными в более традиционном массиве с квадратными ячейками. Получение более высокой средней плотности потока за счет плотно упакованных тепловыделяющих сборок желательно из экономических соображений, так как такая плотная упаковка тепловыделяющих сборок обеспечивает более доходное производство энергии в пересчете на единицу объема активной зоны реактора, что увеличивает прибыль от капиталовложений в АЭС. Однако более высокий тепловой поток приводит к увеличению риска DNB и поэтому является нежелательным из соображений безопасности, как упоминалось выше. Следовательно, становится очень важным адекватное охлаждение таких тепловыделяющих сборок и плотно упакованных в них топливных стержней с тем, чтобы избежать DNB и в то же время получить более высокий тепловой поток в пересчете на единицу объема активной зоны реактора.

Известны тепловыделяющие сборки, пригодные для использования в активной зоне ядерных реакторов. Одна из таких тепловыделяющих сборок описана в патенте США 3787285 под названием "Тепловыделяющая сборка ядерного реактора и активная зона ядерного реактора, содержащая такие тепловыделяющие сборки", выданном 22.01.74 на имя Йоргена Марстренда. В этом патенте раскрыта тепловыделяющая сборка, имеющая направляющие лопатки, оси которых параллельны тепловыделяющим стержням, придающие вихревое движение охладителю, текущему вдоль лопаток, чтобы обеспечить более высокую плотность потока энергии. Тепловыделяющие стержни расположены в виде массива гексагональной формы так, что наружный контур тепловыделяющей сборки является гексагональным. Совокупность лопаток, расположенных вокруг центральной оси и наклоненных относительно нее, вынуждает жидкость течь над тепловыделяющими элементами, в основном, по спиральной траектории вокруг центральной оси. Хотя в патенте Марстренда раскрыта тепловыделяющая сборка, имеющая гексагональный наружный контур и множество направляющих лопаток, в указанном патенте не раскрыта тепловыделяющая сборка, включающая в себя отклоняющие лопатки для отклонения компонента потока жидкости, протекающего мимо такой тепловыделяющей сборки, как описано и заявлено ниже в формуле изобретения.

Хотя в вышеупомянутом патенте раскрыта тепловыделяющая сборка, пригодная для использования в активной зоне ядерного реактора, в нем не раскрыта тепловыделяющая сборка, включающая в себя отклоняющие лопатки для отклонения компонента потока жидкости, протекающего мимо такой тепловыделяющей сборки, как описано и заявлено ниже в формуле изобретения.

Следовательно, есть необходимость в тепловыделяющей сборке, включающей отклоняющие лопатки для надлежащего отклонения компонента потока жидкости, протекающего мимо такой тепловыделяющей сборки.

В соответствии с настоящим изобретением предлагается тепловыделяющая сборка, включающая отклоняющие лопатки для отклонения компонента потока жидкости, протекающего мимо такой тепловыделяющей сборки. Тепловыделяющая сборка содержит элемент решетки, имеющий ячейки ромбовидной формы для стержней и, в основном, ромбовидной формы глухие ячейки в ней. Совокупность параллельных топливных стержней проходит через соответствующие ячейки для стержней, а совокупность параллельных направляющих глухих трубок регулирующих стержней проходит через соответствующие глухие ячейки. Множество отклоняющих лопастей связаны с каждой ячейкой для стержней и закреплены на верхних кромках каждой ячейки для стержней, образуя с ними единое целое. Каждая отклоняющая лопатка над связанной с ней ячейкой для стержня расположена так, что криволинейный контур лопатки частично выступает над ячейкой для стержня с целью отклонения компонента потока жидкости к наружной поверхности тепловыделяющего стержня, проходящего сквозь ячейку для стержня. Отклоняющая лопатка и ромбовидная форма каждой ячейки для стержня совместно создают вихрь вокруг продольной оси тепловыделяющего стержня для поддержания, в основном, однофазного, движущегося вдоль наружной поверхности тепловыделяющего стержня потока жидкости с тем, чтобы можно было избежать DNB даже при наличии сильных тепловых потоков по всей наружной поверхности тепловыделяющего стержня.

Сущность тепловыделяющей сборки в соответствии с настоящим изобретением будет более понятна из следующего описания, приводимого со ссылками на прилагаемые чертежи, на которых
фиг.1 - частичный вертикальный разрез корпуса высокого давления типового энергетического ядерного реактора, при этом некоторые детали удалены для ясности, а корпус высокого давления реактора имеет тепловыделяющие сборки в соответствии с настоящим изобретением, расположенные внутри корпуса, причем каждая из тепловыделяющих сборок включает в себя совокупность тепловыделяющих стержней и тепловыделяющих стержней и направляющих глухих трубок регулирующих стержней;
фиг. 2 - вертикальная проекция одной из тепловыделяющих сборок, показанная с частичными разрезами;
фиг. 3 - местная вертикальная проекция, показывающая элемент решетки для поддерживания тепловыделяющих стержней и глухих трубок;
фиг.4 - вид сверху на элемент решетки вдоль линии разреза 4-4 на фиг.2;
фиг. 5 - вид в перспективе первой внутренней полосы и второй внутренней полосы, принадлежащих элементу решетки и имеющих конфигурацию, позволяющую взаимную блокировку, и отклоняющие лопатки, скрепленные с полосами в одно целое;
фиг. 6 - местный вид в перспективе элемента решетки с одной глухой трубкой и одним тепловыделяющим стержнем, проходящими через нее (глухая трубка и тепловыдяющий стержень показаны штрихпунктирными линиями);
фиг.7 - местный вид сверху внутренней полости элемента решетки вдоль линии разреза 7-7 на фиг.3;
фиг.8 - вертикальная проекция одной из отклоняющих лопаток, показывающая направление потока жидкости при отклонении его отклоняющей лопаткой;
фиг. 9 - вертикальный вид сбоку отклоняющей лопатки вдоль линии разреза 9-9 на фиг.8;
фиг.10 - вид сверху одной из ячеек для стержней, показывающий направление вихревого потока жидкости вокруг тепловыделяющего стержня, проходящего через ячейку для стержня.

В типовом ядерном реактора тепло, выделяемое при деления ядерного вещества, содержащегося в топливных стержнях, передается от тепловыделяющих стержней жидкому замедлителю-охладителю, протекающему мимо тепловыделяющих стержней. Из соображений безопасности важно, чтобы охладитель эффективно отбирал тепло, выделяемое каждым тепловыделяющим стержнем о тем, чтобы избежать DNB. В соответствии с настоящим изобретением такой эффективный отвод тепла от поверхности тепловыделяющего стержня обеспечивается отклоняющими лопатками, принадлежащими тепловыделяющей сборке, содержащей тепловыделяющие стержни.

Тем не менее, перед описанием объекта изобретения целесообразно сначала кратко описать конструкцию и работу типового энергетического ядерного реактора.

Поэтому перейдем к рассмотрению фиг.1, где изображен типовой энергетический ядерный реактор, обозначенный позицией 10, предназначенный для производства тепла путем управляемого деления вещества ядерного топлива 150 (см. фиг.2). Kaк показано на фиг.1, реактор 10 включает в себя корпус 20 высокого давления реактора, имеющий открытый верхний конец и совокупность входных сопел 30 и выходных сопел 40, закрепленных на нем (показано только одно сопло). Крышка 50 плотно пригнана сверху корпуса 20, что позволяет ей герметично закупоривать или закрывать открытый конец корпуса 20. Закупоривание позволяет в процессе эксплуатации реактора 10 обеспечить подходящее давление охладителя внутри корпуса 20.

Согласно фиг.1 внутри корпуса 20 расположена активная зона ядерного реактора, обозначенная как единое целое поз. 60 и содержащая ядерное топливо 150. Через крышку 50 введена совокупность приводных валов 70 регулирующих стержней. Каждый приводной вал 70 соединен с совокупностью регулирующих стержней 80 (см. фиг.2) с целью управления процессом деления в активной зоне 60 реактора способом, известным в производства ядерной энергии. Как показано на фиг.1, внутри корпуса 20 высокого давления реактора находятся горизонтальная верхняя плита 90 активной зоны и горизонтальная нижняя плита 100 активной зоны, удаленная от верхней плиты. Нижняя плита 100 активной зоны и верхняя плита 90 активной зоны имеют многочисленные отверстия 110 для подачи охладителя, расположенные поперек потока охладителя, отбирающего тепло, выделяемое при делении ядерного топлива 150.

В процессе работы активной зоны реактора 10 регулирующие стержни 80, по крайней море, частично выдвинуты из активной зоны 60 реактора с помощью приводных валов 70 для поддержания цепной реакции деления. Так как тепло выделяется в активной зоне 60 реактора, текущий поток жидкого замедлителя-охладителя (например, умягченной воды) вынуждают поступать во входное сопло 30 и циркулировать, в основном, в восходящем потоке через активную зону 60 реактора в направлении, показанном на фиг.1 вертикальными стрелками. Жидкий замедлитель-охладитель содействует процессу деления "замедлением" нейтронов в активной зоне 60 реактора, а также отводит тепло, выделяемое в процессе деления. Жидкий замедлитель-охладитель выходит из ядерного реактора 10 через выходные сопла 40, после чего поступает по трубопроводам в теплообменное устройство (не показано) для генерации пара. Затем пар по трубам поступает из теплообменного устройства в турбогенератор (не показан) для производства электроэнергии способом, известным в области производства электроэнергии.

Фиг. 2 более подробно отображает сущность предмета настоящего изобретения, согласно которому тепловыделяющая сборка включает отклоняющие лопатки для отклонения компонента потока жидкости, протекающего мимо этой тепловыделяющей сборки, как более подробно описано и заявлено ниже. Тепловыделяющая сборка, обозначенная как единое целое поз. 120, содержит совокупность удлиненных, в основном, цилиндрических тепловыделяющих стержней 130, расположенных вертикально и образующих массив элементов. В свою очередь каждый тепловыделяющий стержень содержит удлиненный полый и, в основном, цилиндрический металлический кожух или оболочку 140 для герметизации совокупности, в основном, цилиндрических топливных таблеток 150, способных генерировать тепло путем ядерного деления. Оболочка 140 имеет внутренний диаметр 160 и наружный диаметр 170 и может быть выполнена из любого подходящего металла, имеющего относительное небольшое микроскопическое поперечное сечение поглощения нейтронов, например "ZIRCALOY-4". В этой связи "ZIRCALOY-4" может содержать по массе примерно 1,5% олова, 0,12% железа, 0,09% хрома, 0,05% никеля и 98,24% циркония. Каждая топливная таблетка 150 выполнена из вещества ядерного топлива, содержащего делящиеся ядра, такие как ядра U-235 (т. е. урана 235), равномерно распределенного в матрице воспроизводящих ядер, таких как ядра U-238 (т. е. урана 238), для генерации тепла в процессе ядерного деления. Тепловыделяющая сборка 120, кроме того, содержит первое сопло или первую связывающую плиту 180, имеющую верхний участок 190 и нижний участок 200, при этом первая связывающая плита может иметь шестиугольное поперечное сечение. По причинам, указанным ниже, в первой связывающей плите 180 сделано множество поперечных отверстий (показано только одно). К верхнему участку 190 первой связывающей плиты 180 присоединена, например, посредством прижимных крепежных средств или винтов 210 прижимная пружина 220. Прижимная пружина 220 выступает наружу из верхнего участка 190 первой связывающей плиты 180, упираясь в верхнюю плиту 30 активной зоны, так, что первая связывающая плита и, следовательно, тепловыделяющая сборка смещаются вниз к нижней плите 100 активной зоны, так как тепловыделяющая сборка расположена по вертикали между верхней плитой 90 активной зоны и нижней плитой 100 активной зоны. Смещение тепловыделяющей сборки 120 вниз предотвращает отход тепловыделяющей сборки 120 от нижней плиты 100 активной зоны, который в противном случае может произойти под влиянием направленного вверх гидравлического усилия, прикладываемого со стороны потока жидкого охладителя, поскольку поток жидкости протекает через активную зону реактора, в основном, вверх вдоль однонаправленной оси потока. Второе сопло или вторая связывающая плита 230 пространственно удалена от первой связывающей плиты 180 и может иметь в поперечном сечении правильный шестиугольник. Вторая связывающая плита 230 включает в себя совокупность выступающих наружу ножек 240, выполненных в виде единого целого для установки с топливным комплектом тепловыделяющей сборки 120 в заданном положении на нижней плите 100 активной зоны. По причинам, указанным ниже, во второй связывающей плите 230 сделано множество отверстий 250 (показано только одно).

Согласно фиг.2 с верхним участком 190 первой связывающей плиты 180 соединен приводной вал 70, который по причинам, указанным ниже, имеет выступающие наружу в радиальном направлении плечи 260. К каждому плечу 260 прикреплен и установлен с возможностью скольжения через отверстие 205 удлиненный поглощающий нейтроны стержень или регулирующий стержень 270 для управления процессом деления в тепловыделяющей сборке 120. Совокупность регулирующих стержней 270, выступающих наружу из нижнего участка 200 первой связывающей плиты 180, образует массив параллельных элементов. Каждый регулирующий стержень 270 выполнен из соответствующего материала, например из В4С (т.е. из карбида бора), имеющего относительно большое микроскопическое поперечное сечение поглощения нейтронов. Кроме того, каждый регулирующий стержень 270 откалиброван, чтобы он мог скользить в удлиненной, в основном, цилиндрической и полой направляющей глухой трубке 280 регулирующего стержня, выступающей наружу из нижнего участка 200 первой связывающей плиты 180, причем каждая глухая трубка 280 имеет первый конец 290 и второй конец 300. Каждая глухая трубка 280 также имеет внутренний диаметр 315 и наружный диаметр 320. Первый концевой участок 290 каждой глухой трубки 280 входит в соответствующее отверстие 205 первой связывающей плиты 180 и закрепляется в нем посредством деформации или сварки. Кроме того, второй концевой участок 300 каждой глухой трубки 280 входит в соответствующее отверстие 250 второй связывающей плиты 230 и закрепляется в ней, например, винтом (не показан) или путем образования сварного соединения. Таким образом, первая связывающая плита 180 и вторая связывающая плита 230 взаимосвязаны посредством глухих трубок 280 для обеспечения жесткости и целостности конструкции тепловыделяющей сборки 120.

Coгласно фиг. 2, 3, 4, 5 и 6 вдоль продольных осей глухих трубок 280 и тепловыделяющих стержней 130 и коаксиально между первой связывающей плитой 180 и второй связывающей плитой 230 установлены расположенные соосно элементы решеток, обозначенные как единое целое позицией 310 и предназначенные для поддержания глухих трубок 280 и топливных стержней 130 в заданной конфигурации массива параллельных элементов. По вышеизложенным причинам экономии нейтронов каждый элемент решетки 310 может быть выполнен из "ZIRCALOY-4" или подобного ему материала. Каждый элемент 310 решетки включает в себя наружную полосу 320, имеющую контур в виде правильного шестиугольника, расположенный поперек направления потока жидкости. Таким образом, наружная полоса имеет 6 объединенных в единое целое удлиненных боковых панелей 330, и каждая боковая панель расположена под заданным тупым углом к смежной панели 330, чтобы наружная полоса 330 образовывала контур правильного шестиугольника. Поперек направления потока жидкости и поперек внутренней части наружной полосы 320 расположена совокупность удлиненных параллельных первых внутренних полос 340, причем каждая первая внутренняя полоса 340 имеет заданную длину. Первый концевой участок 350 каждой первой внутренней полосы 340 скреплен воедино с внутренней стенкой, например с внутренней стенкой 374 наружной полосы 320, а второй концевой участок 360 скреплен воедино с другой внутренней стенкой, например с внутренней стенкой 377 наружной полосы 320, так, что по причинам, указанным ниже, каждая первая внутренняя полоса 340 параллельна заранее выбранной одной из боковых панелей 330. Кроме того, внутри наружной полосы 320 поперек нее и поперек жидкостного потока имеется совокупность удлиненных и параллельных вторых внутренних полос 370, причем каждая вторая внутренняя полоса 370 имеет заданную длину. Аналогично первый концевой участок 380 каждой второй внутренней полосы 370 скреплен воедино с одной внутренней стенкой наружной полосы 320, а второй концевой участок 390 скреплен воедино с другой внутренней стенкой наружной полосы 320 по причинам, указанным ниже. Как более подробно изложено ниже, каждая вторая внутренняя полоса 370 пересекает и взаимно соединена с каждой первой внутренней полосой 340 в плоскости пересечения 400 для создания элемента 310 решетки, конструкция которого подобна корзине для яиц. Первая внутренняя полоса 340 и вторая внутренняя полоса 370 таким образом соединены в плоскости пересечения 400 и могут быть скреплены посредством образования сварных соединений 402. В предпочтительном варианте осуществления изобретения каждая вторая внутренняя полоса 370 пересекает каждую первую внутреннюю полосу 340 под углом "Ф", составляющим примерно 29o, к первой внутренней полоса 340, определяя совокупность ромбовидных ячеек 410 для стержней и совокупность, в основном, ромбовидных глухих ячеек 420 в элементе 320 решетки. Первая внутренняя полоса 340 имеет совокупность прорезей 404, перпендикулярных нижней кромке первой внутренней полосы 340 и простирающихся от указанной кромки приблизительно до продольной оси (т.е. до среднего участка) первой внутренней полосы 340 по причинам, описанным ниже. Кроме того, вторая внутренняя полоса 370 имеет совокупность прорезей 406, перпендикулярных верхней кромке второй внутренней полосы 370 и простирающихся от указанной приблизительно до продольной оси (т.е. до среднего участка) второй внутренней полосы 340 по причинам, описанным ниже. Назначением прорезей 404/406 является обеспечение средств взаимоблокировки или взаимного соединения первой внутренней полосы 340 и второй внутренней полосы 370. Таким образом, каждая прорезь 404, проходящая от нижней кромки первой внутренней полосы 340, расположена так, что обеспечивается сопряжение указанной прорези с соответствующей прорезью 407, проходящей от верхней кромки второй внутренней полосы 370. Аналогично каждая прорезь 407, проходящая от верхней кромки второй внутренней полосы 370, расположена так, что обеспечивается сопряжение указанной прорези с соответствующей ей прорезью 404, проходящей от нижней кромки первой внутренней полосы 340. Таким образом, каждая первая внутренняя полоса 340 взаимоблокирована или взаимно соединена со второй внутренней полосой 370 с целью создания конструкции типа корзины для яиц элемента 310 решетки. Конструкция типа корзины для яиц элемента 310 решетки обеспечивает максимальную целостность конструкции элемента 310 решетки, снижая в то же время до минимума вес элемента 310 решетки. Понятно, что термин "нижняя кромка" использован здесь для обозначения кромки, которая расположена ниже в потоке жидкости в активной зоне реактора 60, и термин "верхняя кромка" использован для обозначения кромки, расположенной выше в потоке жидкости. Следовательно, первая внутренняя полоса 340 и вторая внутренняя полоса 370 взаимоблокированы (или взаимно соединены), когда верхняя кромка каждой второй внутренней полосы 370 сопряженно установлена в прорезях 404 каждой первой внутренней полосы 370, а нижняя кромка каждый первой внутренней полосы 340 сопряженно установлена в прорезях 406 каждой второй внутренней полосы 370. Когда первые внутренние полосы 340 и вторые внутренние полосы 370 взаимоблокированы таким образом, каждая первая внутренняя полоса 340 будет пересекать каждую вторую внутреннюю полосу 370 в плоскости пересечения 400 и под заданным углом "Ф", приблизительно равным 29o, как лучше всего видно из фиг.5, формируя ромбовидные ячейки 410 для стержней и, в основном, ромбовидные глухие ячейки 420. Это важно, так как, когда тепловыделяющие стержни 130 проходят через соответствующие им ячейки 410 для стержней, они будут образовывать треугольные ячейки "плотной упаковки" тепловыделяющей сборки 120.

Как лучше всего видно из фиг.4, каждый тепловыделяющей стержень 130 проходит через соответствующую одну из ячеек 410 для стержней и имеет продольную ось, в основном, параллельную оси потока жидкости. Кроме того, каждая глухая трубка 280 проходит через соответствующую одну из глухих ячеек 420 и имеет продольную ось, в основном, параллельную продольной оси потока жидкости. Следовательно, из фиг.4 понятно, что каждый регулирующий стержень 270 окружен связанными с ним тепловыделяющими стержнями 130 для обеспечения удобства управления процессом деления в тепловыделяющих стержнях 130.

Согласно фиг. 6 и 7 каждая глухая трубка 280 закреплена, например, посредством вдавливания и/или сварки в связанной с ней глухой ячейке 420 с целью закрепления каждого элемента 310 решетки в данном положении вдоль длины тепловыделяющей сборки 120. Кроме того, у внутренних стенок каждой ячейки 420 для стержня выполнено множество упругих пружинных элементов 430, выступающих внутрь ячейки или из нее наружу и предназначенных для фрикционного опирания и фиксации каждого тепловыделяющего стержня в соответствующей ему ячейке 410 для стержня таким образом, чтобы этот тепловыделяющий стержень не мог в процессе нормальной работы испытывать осевые перемещения, боковые перемещения и повороты вокруг оси и не создавал связанные с этими перемещениями аварийные ситуации в активной зоне реактора. Каждый пружинный элемент 430 расположен под острым углом, составляющим примерно 45o, относительно упругой первой впадины 440 и упругой второй впадины 450, которые расположены коаксиально и образованы стенками каждой ячейки 420 для стержней. Впадины 440/450 удерживают каждый тепловыделяющий стержень 130 с помощью трения. В предпочтительном варианте осуществления изобретения первая впадина 440 расположена выше в потоке жидкого охладителя, тогда как вторая впадина 450 расположена ниже в потоке жидкого охладителя. Из вышеприведенного описания понятно, что каждый тепловыделяющий стержень 130 опирается и удерживается внутри соответствующей ячейки 410 для стержней в шести точках сцепления или контакта, поскольку внутрь каждой ячейки 410 для стержня обращены четыре впадины и выступают два пружинных элемента, предназначенные для обеспечения фрикционного сцепления каждого тепловыделяющего стержня 130.

Согласно фиг. 5, 6, 7, 8 и 9 с верхней кромкой каждой первой внутренней полосы 340 и каждой второй внутренней полосы 370 скреплены воедино и связаны с каждой ячейкой 410 для стержня отклоняющие средства, например совокупность смещенных друг относительно друга отклоняющих лопаток 460, предназначенных для отклонения компонента потока жидкости, протекающего вокруг каждого тепловыделяющего стержня 130, проходящего через соответствующую ему ячейку 410 для стержня. Спиральный криволинейный контур каждой отклоняющей лопатки 460 расположен выше и частично выступает над связанной с ней ячейкой 410 для стержня с целью образования вихря, когда поток жидкости протекает мимо ячейки 410 для стержня и через нее, с тем, чтобы отклоненный компонент потока жидкости образовывал водоворот вокруг продольной центральной оси тепловыделяющего стержня 130. В предпочтительном варианте осуществления изобретения совокупность отклоняющих лопаток 460 является парой отклоняющих лопаток 460, связанных с каждой ячейкой 410 для стержня. Каждая отклоняющая лопатка 460 имеет спирально изогнутую подповерхность 470 для формирования вышеуказанного вихря. Отклоняющие лопатки 460 могут быть изогнуты внутрь от верхней кромки внутренних полос 340/370 так, чтобы образовать, в основном, острый угол к направлению потока струи жидкости. Две отклоняющие лопатки 460 противоположно ориентированы относительно друг друга так, что оба спиральных вихря, образованных парой отклоняющих лопаток 460, связанных с каждой ячейкой 410 для стержня, не могут течь в противотоке друг с другом. Исключение такого противотока предотвращает разрыв спиральных вихрей и обеспечивает необходимый рисунок комбинированного спирального вихревого потока, который восходит по спирали вверх вдоль наружной поверхности тепловыделяющего стержня 130. Следовательно, когда первые внутренние полосы 340 и вторые внутренние полосы 370 должным образом взаимоблокированы, как описано выше, каждая ячейка 410 для стержня будет иметь две связанные с ней отклоняющие лопатки 460. Обеспечение двумя отклоняющими лопатками 460 гарантирует, что компонент потока жидкости, отклоняемый относительно продольной оси каждого тепловыделяющего стержня 130, будет оказывать большое закручивающее воздействие, чем при наличии только одной отклоняющей лопатки 460. Каждые две отклоняющие лопатки 460 простираются или частично выступают над связанной с ней ячейкой 410 для стержня с целью отклонения компонента потока жидкости, протекающего снизу вверх через ячейку 410 для стержня.

В этой связи следует отметить, что подповерхность 470 каждой отклоняющей лопатки 460 имеет криволинейный профиль, простирающийся вверх от верхней кромки первой внутренней полосы 340 или второй внутренней полосы 370 на заданное расстояние над ячейкой 410 для стержня, и выступает вверх над каждой ячейкой 410 для стержня с целью изменения направления протекающего потока на направление, которое указано стрелками на фиг.8. Кроме того, две отклоняющие лопатки, связанные с каждой ячейкой 410 для стержня, установлены так, что одна из двух отклоняющих лопаток 460 расположена по существу около острого угла ячейки 410 для стержня. То есть, две отклоняющие лопатки 460 размещены, в основном, симметрично относительно большей диагонали ячейки 410 для стержня. Более того, каждая первая внутренняя полоса 340 и каждая вторая внутренняя полоса 370 могут иметь совокупность удаленных друг от друга приваренных язычков 473, образующих единое целое с нижней кромкой каждой второй внутренней полосы 370, выступающих из нее наружу и параллельных потоку жидкости, предназначенных для того, чтобы обеспечить наличие свариваемого материала для сваривания первой и второй внутренних полос 340/370 после того, как первая и вторая внутренние полосы 340/370 будут надлежащим образом взаимоблокированы. Кроме того, наружная полоса 330 может включать в себя совокупность смещенных друг относительно друга отогнутых внутрь язычков 475, скрепленных воедино с нижней кромкой указанной полосы и выступающих из нее наружу, с целью облегчения проскальзывания первой тепловыделяющей сборки 120 относительно второй тепловыделяющей сборки 120 во время операций перегрузки топлива, вследствие чего первая тепловыделяющая сборка 120 не будет создавать препятствия второй тепловыделяющей сборке или "зависать" на ней. Помимо этого, наружная полоса 330 может включать в себя совокупность удаленных друг от друга и отогнутых внутрь отклоняющих ребер 477, предназначенных для отклонения компонента потока жидкости к тепловыделяющим стержням 130, расположенным вдоль внутренней боковой поверхности наружной полосы 330. В этой связи, каждое отклоняющее ребро 477 имеет, в основном, пирамидальный наружный контур, скреплено своим основанием воедино с верхней кромкой наружной полосы 330, простирается поверх связанной с ним ячейки 410 для стержня и частично выступает над ней.

При работе реактора 10 поток жидкого замедлителя-охладителя поступает во входное сопло 30 и течет, в основном, в направлении, соответствующем одной из горизонтальных стрелок, показанных на фиг.1. Затем поток жидкости вынуждают поворачивать вверх, проходить через отверстия 110 и протекать мимо каждой тепловыделяющей сборки 120, расположенной в активной зоне 60 реактора, и через эту сборку, причем жидкость течет через активную зону 60 реактора, в основном, в направлении, показанном на фиг.1 вертикальными штрихами. После того как поток жидкости прошел через активную зону 60 реактора, он выходит из реактора 10 через выходное сопло 40 и течет, в основном, в направлении, показанном на фиг.1 другой горизонтальной стрелкой.

Поскольку поток жидкости протекает через активную зону 60 реактора, он будет проходит через каждую ромбовидную ячейку 410 для стержня, образованную элементом 310 решетки. Так как поток жидкости протекает через каждый элемент 310 решетки и связанные с ней ячейки 410 для стержней, скорость потока жидкости будет уменьшаться и будет происходить падение давления вследствие того, что элемент решетки, расположенный в потоке жидкости, образует препятствие. Это падение давления может привести к пузырьковому кипению на наружной поверхности тепловыделяющего стержня 130 в области ячейки 410 для стержня. При отсутствии отклоняющих лопаток 460, отводящих от тепловыделяющего стержня 130 достаточно большое количество тепла, на поверхности тепловыделяющегося стержня 130 может иметь место частичное или устойчивое пленочное кипение (т. е. DNB), результатом которого будет "пережог", что нежелательно из соображений безопасности. Таким образом, отклоняющие лопатки 460 обеспечивают отклонение потока жидкости по спирали внутрь к наружной поверхности тепловыделяющего стержня 130, что дает возможность избежать частичного или устойчивого пленочного кипения. Даже в случае шестиугольной решетки с треугольными ячейками, но без отклоняющих лопаток, применение отклоняющих лопаток 460 улучшит показатели противодействия возникновению DNB и теплопроизводительность. Такое улучшение показателей противодействия DNB обеспечит увеличение теплового к.п.д. тепловыделяющего стержня примерно на 25% по сравнению с существующими конструкциями, имеющими шестиугольные решетки с треугольными ячейками, но не имеющими отклоняющих лопаток или отклоняющих ребер.

Ромбовидный поперечный контур каждой ячейки 410 для стержня взаимодействует или содействует с изогнутой подповерхностью 470 каждой отклоняющей лопатки 460 для образования вихря с тем, чтобы избежать DNB. В этой связи отметим, что ромбовидный контур каждой ячейки 410 для стержня имеет уменьшенную площадь, поперечную протекающему потоку, по сравнению с квадратной ячейкой для стержня в более традиционных конструкциях активной зоны. Следовательно, из-за уменьшенной поперечно потоку площади ячейки 410 для стержня, обусловленной ромбовидной формой ячейки 410 для стержня, большая часть потока жидкости, протекающего вверх через ячейку 410 для стержня, вынуждена контактировать с подповерхностью 470 каждой отклоняющей лопатки 460 при выходе потока жидкости из ячейки 410 для стержня. Следовательно, так как большая часть потока жидкости контактирует с подповерхностью 470 отклоняющей лопатки 460, то и отклоняться будет большая часть потока жидкости, чем в случае традиционного массива с квадратными ячейками. Это в конечном счете вызовет больший вихрь при поддержании жидкого, по существу однофазного потока на наружной поверхности тепловыделяющего стержня для исключения DNB.

Кроме того, ромбовидные ячейки 410 для стержней элемента 310 решетки в сочетании с отклоняющими лопатками 460, по существу, исключают потребность в больших и более дорогих насосах охладителя реактора, увеличении скорости потока жидкости с целью поддержания однофазного потока жидкости на наружной поверхности тепловыделяющих стержней 130. Это происходит в связи с тем, что вихри, генерируемые каждой ячейкой 410 для стержня и связанными с ней отклоняющими лопатками 460, ускоряют поток жидкости вокруг наружной поверхности каждого тепловыделяющего стержня 130.

Кроме того, ромбовидные ячейки для стержней обеспечивают создание массива тепловыделяющих стержней и уменьшенный шаг между центрами смежных тепловыделяющих стержней 130 по сравнению с традиционным массивом тепловыделяющих стержней, имеющим квадратные ячейки. Это позволяет более плотно упаковывать тепловыделяющие стержни 130 и получать больше энергии от активной зоны реактора данного размера. Это желательно, так как более плотная упаковка активной зоны реактора обеспечивает более доходное производство энергии в пересчете на единицу объема, приводящее, в конечном счете, к увеличению отдачи от вложенных в АЭС инвестиций.

Кроме того, из вышеизложенного описания понятно, что отклоняющие лопатки 460 вынуждают массу более холодного охладителя смешиваться с более теплой жидкостью возле поверхности (т.е. возле наружного диаметра 170) каждого тепловыделяющего стержня 130 так, что разность температур между объемом охладителя и жидкостью возле поверхности тепловыделяющего стержня сводится к минимуму. Это обеспечивает, по существу, однофазный поток жидкости над поверхностью тепловыделяющего стержня с целью исключения DNB.

Похожие патенты RU2192051C2

название год авторы номер документа
СПОСОБ ИЗГОТОВЛЕНИЯ РЕШЕТОЧНОГО ЭЛЕМЕНТА И РЕШЕТОЧНЫЙ ЭЛЕМЕНТ 1993
  • Эдмунд Эмори Демарио
  • Чарльз Норман Лаусон
RU2115179C1
ЯДЕРНАЯ ТЕПЛОВЫДЕЛЯЮЩАЯ СБОРКА С РЕШЕТКОЙ ПОВОРОТНЫХ ГНЕЗД 2010
  • Бун Майкл Л.
  • Пендли Ховард А. Ii
RU2509765C2
Устройство для улавливания расплавленного топлива и обломков конструкции тепловыделяющих сборок ядерного реактора 1975
  • Джек Е. Джонсон
SU712050A3
РАЗДВИГАЮЩАЯСЯ ВЕРХНЯЯ НАСАДКА С УСТРОЙСТВОМ ДЛЯ ЕЕ КРЕПЛЕНИЯ К УЗЛУ, СОДЕРЖАЩЕМУ ЯДЕРНОЕ ТОПЛИВО 1995
  • Эдмунд Е.Демарио
  • Чарльз Н.Лоусон
  • Раймонд Г.Закржевский
  • Иван Клима
RU2155393C2
ОПОРНАЯ РЕШЕТКА ЯДЕРНОЙ ТЕПЛОВЫДЕЛЯЮЩЕЙ СБОРКИ 2010
  • Лу Йонг Роджер
  • Цзян Сяоянь Джейн
  • Коннер Майкл Е.
  • Эванс Пол М.
RU2537693C2
МОНТАЖНАЯ СИСТЕМА ДЛЯ ВВЕДЕНИЯ ИНСТРУМЕНТА В КАМЕРУ С УЗКОЙ ГОРЛОВИНОЙ (ВАРИАНТЫ) И УСТРОЙСТВО ДЛЯ УСТАНОВКИ ПРОБКИ ДЛЯ ЗАКУПОРИВАНИЯ ТРУБЫ ТЕПЛООБМЕННИКА ПАРОГЕНЕРАТОРА 1991
  • Вильям Кэннет Куллен[Us]
  • Дэвид Аллен Снайдер[Us]
RU2087797C1
СМЕШАННО-ОКСИДНАЯ ТЕПЛОВЫДЕЛЯЮЩАЯ СБОРКА 2009
  • Феттерман Роберт Дж.
RU2506656C2
ПРИЖИМНАЯ ПРУЖИНА ТЕПЛОВЫДЕЛЯЮЩЕЙ СБОРКИ ЯДЕРНОГО РЕАКТОРА 2011
  • Ли, И, Чунг
  • Чои, Дзоонхниунг
RU2573598C2
УЗЕЛ ПРУЖИНЫ КАМЕРЫ ПОВЫШЕННОГО ДАВЛЕНИЯ И ТОПЛИВНОГО СТЕРЖНЯ 2011
  • Алешин Юрий
  • Грин Стефен Х.
  • Этвуд Эндрю
  • Шах Хемант
RU2573582C2
Входное устройство активной зоны ядерного реактора 1975
  • Вильям Е.Пеннелл
SU631090A3

Иллюстрации к изобретению RU 2 192 051 C2

Реферат патента 2002 года ТЕПЛОВЫДЕЛЯЮЩАЯ СБОРКА

Изобретение относится к тепловыделяющей сборке, включающей отклоняющие лопатки для отклонения компонентов потока жидкости в активных зонах ядерных энергетических реакторов. Тепловыделяющая сборка содержит отклоняющие лопатки для отклонения потока жидкости, протекающего мимо такой тепловыделяющей сборки. Тепловыделяющая сборка содержит элемент решетки, имеющий ромбовидные ячейки для стержней и ромбовидные глухие ячейки. Совокупность параллельных тепловыделяющих стержней проходит через соответствующие им ячейки для стержней, а совокупность параллельных направляющих глухих трубок регулирующих стержней проходит через соответствующие им глухие ячейки. С каждой ячейкой для стержня связана совокупность отклоняющих лопаток, скрепленных за одно целое с верхними кромками каждой ячейки для стержня. Каждая отклоняющая лопатка проходит выше связанной с ней ячейки для стержня и имеет криволинейный контур, частично выступающий над ячейкой для стержня с целью отклонения компонента потока жидкости к наружной поверхности тепловыделяющего стержня, проходящего через ячейку для стержня. Технический результат - отклоняющие лопатки и ромбовидная форма каждой ячейки для стержня содействуют образованию вихря вокруг продольной оси тепловыделяющего стержня для поддержания, по существу, однофазного потока жидкости вдоль наружной поверхности тепловыделяющего стержня, чтобы таким образом избежать DNB даже при наличии больших тепловых потоков через наружную поверхность тепловыделяющего стержня. 2 з.п. ф-лы, 10 ил.

Формула изобретения RU 2 192 051 C2

1. Тепловыделяющая сборка, выполненная с возможностью отклонения компонента потока жидкости, протекающего мимо тепловыделяющей сборки и имеющего ось потока жидкости, содержащая элемент решетки, включающий наружную полосу, имеющую шестиугольный поперечный контур, расположенный поперек потока жидкости, совокупность первых внутренних полос, расположенных поперек потока жидкости, причем каждая из первых внутренних полос прикреплена к наружной полосе внутри нее, и совокупность вторых внутренних полос, расположенных поперек потока жидкости, причем каждая из вторых внутренних полос прикреплена к наружной полосе внутри нее, совокупность удлиненных тепловыделяющих стержней, расположенных в виде массива параллельных элементов в потоке жидкости, причем каждый тепловыделяющий стержень имеет продольную ось, параллельную оси потока жидкости, совокупность отклоняющих лопаток, связанную с каждой ячейкой для стержня, причем каждая отклоняющая лопатка скреплена за одно целое с элементом решетки и имеет криволинейный контур, частично выступающий над связанной с ней ячейкой для стержня под наклоном к оси потока жидкости, отличающаяся тем, что содержит совокупность удлиненных глухих трубок, расположенных в виде массива параллельных элементов в потоке жидкости, причем каждая глухая трубка имеет продольную ось, параллельную оси потока жидкости, и каждая вторая внутренняя полоса пересекает каждую первую внутреннюю полосу под углом к первой внутренней полосе, для образования совокупности ромбовидных ячеек для стержней и совокупности ромбовидных глухих ячеек в элементе решетки, при этом тепловыделяющие стержни проходят через соответствующие им ячейки для стержней, с образованием в массиве треугольных ячеек, а глухие трубки проходят через соответствующие им глухие ячейки. 2. Тепловыделяющая сборка по п.1, отличающаяся тем, что каждая из множества отклоняющих лопаток имеет спиральный криволинейный контур, частично выступающий над связанной с ней ячейкой для стержней. 3. Тепловыделяющая сборка по п.2, отличающаяся тем, что совокупность отклоняющих лопаток представляет собой пару противоположно ориентированных, смещенных друг относительно друга отклоняющих лопаток.

Документы, цитированные в отчете о поиске Патент 2002 года RU2192051C2

СПОСОБ ПОЛУЧЕНИЯ АНТИКОРРОЗИОННОГО ЛАКОКРАСОЧНОГО МАТЕРИАЛА 2016
  • Бутырская Елена Васильевна
  • Нечаева Людмила Станиславовна
  • Запрягаев Сергей Александрович
RU2662010C2
Тепловыделяющая сборка ядерного реактора 1988
  • Богословская Галина Павловна
  • Базанов Юрий Борисович
  • Кривенцев Владимир Иванович
  • Сорокин Александр Павлович
  • Титов Павел Александрович
SU1702435A1
Устройство для дистанционирования топливных стержней в топливной сборке ядерного реактора 1979
  • Жозеф Леклерк
SU884591A3
Способ моделирования преднамеренных повреждений элементов сети связи, функционирующей в интересах разнородных, в том числе антагонистических, систем управления 2017
  • Бречко Александр Александрович
  • Бухарин Владимир Владимирович
  • Вершенник Алексей Васильевич
  • Вершенник Елена Валерьевна
  • Львова Наталия Владиславовна
  • Стародубцев Юрий Иванович
RU2655466C1
Рубительная машина 1973
  • Даугавиетис Марис Оттович
  • Лацис Висвалдис Валентинович
SU455847A1

RU 2 192 051 C2

Авторы

Демарио Эдмунд Эмори

Лаусон Чарльз Норман

Даты

2002-10-27Публикация

1993-10-26Подача