СПОСОБ РЕГИСТРАЦИИ ИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЙ Российский патент 2002 года по МПК G01T1/00 

Описание патента на изобретение RU2195004C2

Изобретение относится к области ядерной физики, а точнее - к способам регистрации ионизирующих излучений. Изобретение наиболее эффективно может быть использовано для создания установок, измеряющих мощность дозы ионизирующих излучений, например, при конструировании радиометров.

Известно большое число методов регистрации ионизирующих излучений, основанных на различных физических принципах (К.Н.Мухин. Экспериментальная ядерная физика. T.1. - М.: Атомиздат, 1974; В.И.Калашникова, М.С.Козодаев. Детекторы элементарных частиц. - М.: Наука, 1966). Большинство из них основано на регистрации ионизирующей способности излучения, то есть на образовании за счет энергии излучения в веществе детектора пар носителей заряда (свободных электронов и положительно заряженных ионов или дырок). Образующиеся в результате взаимодействия излучения с веществом пары зарядов далее могут быть зарегистрированы по оптическому эффекту (сцинтилляционный детектор) или непосредственно электронными методами (ионизационная камера, счетчик Гейгера, полупроводниковый детектор). Указанные способы пригодны для регистрации малых потоков ионизирующего излучения и отдельных частиц, но наряду с достоинствами каждому из методов свойственны свои недостатки и ограничения. Практически все известные методы детектирования ионизирующих излучений требуют наличия источника высокого напряжения для питания детектора (газоразрядные и полупроводниковые детекторы) или фотоэлектронного умножителя (сцинтилляционные детекторы). Газоразрядные детекторы, как правило, имеют небольшую массу вещества и значительные габариты из-за малой плотности газа. Полупроводниковые детекторы обладают хорошими спектрометрическими характеристиками, но для реализации высокого разрешения их, как правило, охлаждают. И те, и другие детекторы имеют ограниченную радиационную стойкость из-за изменений в составе или структуре вещества детектора под действием облучения. Сцинтилляционные детекторы имеют высокие временные параметры и высокую эффективность, но необходимость применения фотоэлектронного умножителя или аналогичного полупроводникового прибора приводит к увеличению габаритов и обуславливает необходимость иметь в составе установки, реализующей способ, источник высокого напряжения.

Наиболее близким по физической сущности к заявляемому является способ регистрации ионизирующего излучения с помощью пьезоэлектрических преобразователей (Л. М. Лямшев. Радиационная акустика. - М.: Наука, Физматлит, 1996). Этот способ используется для регистрации интенсивных пучков заряженных частиц и отдельных частиц высоких энергий. Поток частиц или одиночная частица высокой энергии проходит сквозь материал датчика, вызывая ионизацию вещества, и, как следствие, акустическую волну. Технически способ реализуется в виде устройства, идентичного датчику вибраций (пьезоэлектрический микрофон, гидрофон). В рассматриваемом способе в качестве чувствительного элемента детектора используют пьезоэлемент, сигнал с которого усиливается малошумящим усилителем и далее подается на регистрирующее устройство. Детектируемой величиной является напряжение сигнала, возникающее на пьезоэлементе в результате вибрации, вызванной акустической волной в веществе, возникающей при прохождении частицы высокой энергии. Для детектирования элементарных частиц сравнительно малых энергий (единицы МэВ) такой метод регистрации может быть применен только в случае больших потоков частиц. Акустический сигнал, возбуждаемый отдельной частицей, в этом случае оказывается примерно на пять порядков ниже порога регистрации. Таким образом, этот способ не обладает достаточной чувствительностью и не может быть использован для регистрации малых потоков ионизирующих излучений, например, в целях дозиметрии.

Задачей изобретения является разработка способа регистрации сравнительно малых потоков ионизирующих излучений (103 частиц/с и меньше) с энергией до единиц МэВ, пригодного для целей дозиметрии и для регистрации отдельных ионизирующих частиц в указанном диапазоне энергии.

Решение поставленной задачи достигается тем, что в известном способе регистрации ионизирующего излучения, заключающемся в том, что детектор помещают в поле ионизирующего излучения, новым является то, что в качестве детектора используют пьезорезонансный датчик и регистрируют изменение периода или фазы колебаний датчика, вызванное актом взаимодействия излучения с материалом пьезорезонансного датчика и пропорциональное величине ионизации.

В заявленном способе в отличие от прототипа вместо пьезоэлемента применены пьезорезонансный датчик и соответствующая методика детектирования сигнала с датчика (В. В.Малов. Пьезорезонансные датчики. - М.: Энергоатомиздат, 1989), позволяющая многократно повысить чувствительность детектора. Пьезорезонансные датчики широко применяются для измерений температуры, ускорения, давления, механических напряжений и т.п. Применение этого метода для регистрации ионизирующих излучений в литературе не описано.

Сущность и новизна предлагаемого способа основаны на экспериментально обнаруженном факте, что пьезорезонансный датчик является элементом, чувствительным к ионизирующему излучению. Способ заключается в том, что в поле ионизирующего излучения помещают колеблющийся пьезорезонансный датчик, включенный в схему, позволяющую регистрировать малые изменения частоты (фазы) колебаний датчика, вызванные актом взаимодействия излучения с материалом резонатора и пропорциональные величине ионизации.

Практическая реализация заявляемого способа представлена на чертеже, где:
1 - источник бета-частиц;
2 - заслонка, управляемая электромагнитом;
3 - кварцевые резонаторы;
4 - идентичные по схемному решению транзисторные автогенераторы;
5 - конденсатор связи;
6 - быстродействующий компаратор. Сигнал с выхода компаратора подается на вход Y осциллографа;
7 - осциллограф. Развертка синхронизируется сигналом одного из кварцевых генераторов.

В данном примере конкретной реализации заявляемого способа были использованы элементы, описанные ниже.

В качестве источника бета-частиц был использован радиоактивный элемент Sr90 (1). Примененный образец обеспечивал величину потока частиц, направляемых на датчик, около 103 частиц/с. В качестве чувствительных элементов (3) в детекторе были использованы вакуумные резонаторы типа Э2 с паспортной частотой 100 кГц, подобранные по частоте с точностью до единиц герц. Эти резонаторы служат частотозадающими элементами генераторов (4). Поток бета-частиц подается на один из резонаторов (3). Заслонка (2) позволяет перекрыть поток бета-частиц или направить его на резонатор. Поток частиц, взаимодействуя с материалом резонатора, вызывает изменение частоты (фазы) колебаний резонатора. Взаимно синхронизированные генераторы (4) образуют схему синхронного детектирования, позволяющую на экране осциллографа (7) наблюдать эффект воздействия ионизирующего излучения на резонатор. Для взаимной синхронизации генераторов колебаний служит конденсатор связи (5) с емкостью порядка нескольких пикофарад. Емкость конденсатора подбирается таким образом, чтобы время взаимной синхронизации составляло величину порядка секунды. На осциллографе (7) наблюдается изменение положения точки пересечения нуля сигнала, снимаемого с одного из генераторов в зависимости от положения заслонки. Компаратор 597СА1 (6) в описываемом детекторе был применен для преобразования колебаний одного из генераторов в прямоугольные импульсы для того, чтобы ожидаемый эффект было удобнее наблюдать на экране осциллографа.

В результате опытов с детектором было найдено, что облучение резонатора потоком бета-частиц Sr90 интенсивностью порядка 103 частиц/с приводит к увеличению периода колебаний соответствующего резонатора на 3±1 нс. Увеличение или уменьшение потока ионизирующего излучения приводят к соответствующему пропорциональному потоку изменения периода колебаний резонатора.

Обнаруженный эффект позволяет конструировать детекторы ионизирующего излучения на основе пьезорезонансных датчиков, причем эти приборы будут отличаться компактностью, относительной простотой, высокой надежностью и радиационной стойкостью. Особенно перспективны для использования в качестве детекторов изучений резонаторы на основе пьезоматериалов, имеющих больший, чем у кремния, атомный номер и удельный вес, таких как титанат бария, танталат лития и др.

Похожие патенты RU2195004C2

название год авторы номер документа
УСТРОЙСТВО ДЛЯ КОНТРОЛЯ РАДИАЦИОННОЙ ОБСТАНОВКИ 2004
  • Родионов Александр Александрович
RU2289828C2
СПОСОБ ИЗМЕРЕНИЯ РАДИАЦИОННОЙ ЭЛЕКТРОПРОВОДНОСТИ ДИЭЛЕКТРИЧЕСКОГО МАТЕРИАЛА 1999
  • Олейник В.С.
  • Ермаков К.Н.
RU2148819C1
УСТРОЙСТВО ДЛЯ РЕГИСТРАЦИИ ИОНИЗИРУЮЩИХ ЧАСТИЦ 1998
  • Найденков А.Ф.
  • Стабников М.В.
RU2149425C1
ТОНКИЙ СЦИНТИЛЛЯЦИОННЫЙ СЧЁТЧИК 2015
  • Горин Александр Милославович
  • Медынский Михаил Вячеславович
  • Рыкалин Владимир Иванович
RU2599286C1
СПОСОБ РЕГИСТРАЦИИ ИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЙ 2011
  • Лазарев Сергей Григорьевич
  • Кибкало Алексей Алексеевич
  • Елин Владимир Александрович
RU2484554C1
УСТРОЙСТВО ДЛЯ РЕНТГЕНОФЛУОРЕСЦЕНТНОГО АНАЛИЗА 1997
  • Кондуров И.А.
  • Коротких Е.М.
RU2158918C2
СЦИНТИЛЛЯЦИОННЫЙ СЧЕТЧИК ИОНИЗИРУЮЩЕГО ИЗЛУЧЕНИЯ 2013
  • Вуколов Артем Владимирович
RU2548048C1
СПОСОБ РЕГИСТРАЦИИ РЕАКТОРНЫХ АНТИНЕЙТРИНО 2019
  • Коржик Михаил Васильевич
  • Федоров Андрей Анатольевич
  • Мечинский Виталий Александрович
  • Досовицкий Георгий Алексеевич
RU2724133C1
СПОСОБ ОПРЕДЕЛЕНИЯ ВЕЛИЧИНЫ ВЫХОДА ТЕРМОЯДЕРНЫХ НЕЙТРОНОВ ИМПУЛЬСНОГО ИСТОЧНИКА 2019
  • Гордеев Анатолий Юрьевич
  • Губачев Александр Владимирович
  • Подувалов Александр Николаевич
  • Фадеев Владимир Юрьевич
RU2701189C1
СЦИНТИЛЛЯЦИОННЫЙ ДЕТЕКТОР НЕЙТРОНОВ 2020
  • Юдов Алексей Александрович
  • Чернухин Юрий Илларионович
RU2730392C1

Реферат патента 2002 года СПОСОБ РЕГИСТРАЦИИ ИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЙ

Использование: для создания установок, измеряющих мощность дозы ионизирующих излучений, например, для конструирования радиометров. Способ заключается в том, что поток частиц направляют на колеблющийся пьезорезонансный датчик и регистрируют изменение периода или фазы колебания датчика, вызванное актом взаимодействия излучения с материалом пьезорезонансного датчика и пропорциональное величине ионизации. Технический результат: регистрация сравнительно малых потоков ионизирующих излучений (103 частиц/с и меньше) с энергией до единиц МэВ. 1 ил.

Формула изобретения RU 2 195 004 C2

Способ регистрации ионизирующих излучений, заключающийся в том, что в поле ионизирующего излучения помещают детектор, отличающийся тем, что в качестве детектора используют пьезорезонансный датчик и регистрируют изменение периода или фазы колебаний датчика, вызванное актом взаимодействия излучения с материалом пьезорезонансного датчика и пропорциональное величине ионизации.

Документы, цитированные в отчете о поиске Патент 2002 года RU2195004C2

Аппарат для очищения воды при помощи химических реактивов 1917
  • Гордон И.Д.
SU2A1
Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
Кипятильник для воды 1921
  • Богач Б.И.
SU5A1
Кипятильник для воды 1921
  • Богач Б.И.
SU5A1

RU 2 195 004 C2

Авторы

Родионов А.А.

Даты

2002-12-20Публикация

2000-04-05Подача