Изобретение относится к водоподготовке и может быть использовано для получения в домашних условиях питьевой воды с физиологически необходимым (лечебным) содержанием целевых добавок, таких как микроэлементы, соли, витамины и др.
Необходимость питьевой воды, содержащей добавки и оказывающей оздоровительный, а в определенных случаях целебный эффект на наш организм, на сегодняшний день доказана учеными.
Из уровня техники известно значительное количество решений, направленных на создание целевых добавок и средств их введения в воду.
В самом простом случае порошкообразную минерализующую добавку смешивают с дистиллятом (1, 2).
Согласно (3) добавку вводят в виде таблетки, растворяющейся в потоке жидкости. Устройство для введения таблетки выполнено таким образом, что нижняя поверхность таблетки постоянно контактирует со слоем жидкости, обеспечивая при растворении введение соли в воду.
Согласно (4) устройство для введения добавки выполнено в виде магазина таблеток и снабжено средством, обеспечивающим введение в поток жидкости заданной таблетки.
Согласно (5) для интенсификации растворения добавки - таблетки устройство содержит источник ультразвуковых колебаний.
Перечисленные решения не позволяют варьировать концентрации вводимых элементов в широком диапазоне, поскольку практически невозможно обеспечить бесконечно медленное растворение таблетки для введения микродозы целевой добавки.
Согласно изобретению, раскрытому в (6), известен аппарат для обработки воды, содержащий секции, в которых вода обогащается микроэлементами, например электролизно растворяемых металлов, насыщается газами или парами полезных добавок. Установка для введения добавок конструктивно сложна и предназначена для повышения качества больших объемов воды, предназначенной для мелиорации.
Известно использование гранул активированного угля с неорганическими малорастворимыми соединениями на поверхности (7). Активированный уголь (гранулы) предварительно последовательно обрабатывают насыщенными растворами хлоридов кальция и магния, а затем насыщенными растворами сульфата калия и бикарбоната натрия. После каждой обработки уголь промывают водой и сушат при Т= 150-200oС. Величина пор модифицированного таким образом угля фактически зависит от межгранульного пространства и составляет значительную величину. Крупные поры не позволяют дозировать добавки в микроколичествах. Из полученного материала изготовлены таблетки, которые размещают в воде. Ресурс устройства по соленасыщению невелик, а введение витаминов практически невозможно.
Дозаторы, основанные на ионообменных процессах, известны из решений-аналогов (8, 9, 10). Указанные изобретения относятся к конструкциям для введения макро- и микроэлементов (9, 10) и технологии изготовления засыпки для фильтрации воды, одним из слоев которой служит материал, содержащий целевую добавку.
Согласно известному решению (9) органические иониты, обладающие пористой структурой в воздушно-сухом состоянии, подвергают последовательным обработкам растворами веществ, вступающих в обменные или окислительно-восстановительные реакции с осаждением одного или нескольких продуктов реакций. Устройство для введения добавки, согласно (9), содержит корпус и дозатор, изготовленный из указанного ионита. При работе устройства вода обогащается макро- и микроэлементами при удельной производительности более 1 мин -1. Технология изготовления материала - дозатора добавки сложна. При растворении малорастворимых соединений, сорбированных поверхностью ионита (истощении поверхности), дозатор должен быть заменен или подвергнут регенерации. В качестве недостатка известного устройства можно отметить и то, что оно не позволяет вводить добавки в широком интервале концентраций и органические элементы, например, такие как витамины.
Наиболее близким заявляемому решению является устройство для введения добавки в воду, включающее корпус и размещенный в нем контейнер с крышкой, содержащий добавку (11). К недостаткам известного решения можно отнести недостатки, характерные для раскрытых выше аналогов.
Задачей изобретения является создание устройства, позволяющего вносить в питьевую воду разнообразные добавки, как неорганические, так и органические, в широком интервале концентраций, доступное потребителю и простое в эксплуатации. Технический результат достигается тем, что в устройстве для введения добавки в воду, включающем корпус и размещенный в нем контейнер с крышкой, содержащий добавку, крышка контейнера выполнена перфорированной, по меньшей мере, верхняя часть корпуса устройства, контактирующая с перфорированной крышкой, выполнена из материала пространственно-глобулярной структуры (ПГС), при этом высота верхней части корпуса не превышает 30% высоты контейнера, а площадь отверстий перфорации - не более 2% площади крышки контейнера. ПГС - глобулярный трехмерный ионит, имеющий размер глобул 5-7 мкм. Микроглобулы в ионите ПГС образуют регулярную высокопроницаемую структуру, что обусловлено спонтанным саморегулирующимся механизмом полимерообразования. Средний размер пор составляет 3-5 мкм, общая пористость - более 65 об. %. Обычно этот материал используют для сорбционных процессов при высоких скоростях пропускания растворов. Так как размер микроглобул ионита ПГС на два порядка меньше, чем у ионитов стандартного зернения (5-7 мкм против 0,5-0,7 мм), то объемные скорости пропускания растворов могут достигать величин, в 100 и более раз превышающих скорости пропускания растворов через неподвижный слой ионита обычного зернения (1000-2000 против 10-15 уд. об/ч соответственно). Структура и свойства ионита ПГС известны, например из (12). Различные модификации способа получения материала ПГС, например, в соответствии с (13) и (14) позволяют значительно расширить диапазон размеров его пор и тем самым повысить проницаемость сорбента.
Объем твердой добавки не превышает 0,9 объема контейнера, т.е. твердая добавка установлена с необходимым зазором относительно стенок контейнера.
Указанные выше соотношения позволяют использовать ПГС не в качестве сорбента, а в качестве фильтра, поры которого обеспечивают введение заданной добавки в воду. Отмеченный эффект достигается тем, что при контакте устройства с водой в контейнере образуется насыщенный раствор добавки (если исходное состояние добавки твердофазное), ионы которого практически мгновенно вытесняют подвижные ионы из ПГС, и далее она работает в режиме механического фильтра.
При высоте верхней части корпуса, превышающей 30% высоты контейнера, материал корпуса сорбирует ионы раствора добавки и дозирование отсутствует.
Перфорация оптимальных размеров позволяет вводить добавку с заданной скоростью, достигая концентраций, обеспечивающих наибольшее усвоение добавки человеческим организмом.
При введении витаминов, например, аскорбиновой кислоты, ПГС работает исключительно как пористая структура, т.к. ионный обмен в данном случае не имеет места.
При установке устройства в движущемся потоке воды скорость дозирования добавки зависит от скорости движения воды, регулируя которую, можно добиться введения заданного количества добавки в широком интервале концентраций. При этом удается достичь достаточно малых концентраций, что невозможно при реализации известных решений.
При использовании устройства в стационарных условиях (непроточной воде) необходимую концентрацию получают по истечении определенного времени, которое устанавливается предварительной градуировкой.
Устройство может быть в необходимых случаях снабжено чехлом, а корпус устройства может быть выполнен из материала ПГС целиком или, по меньшей мере, его верхняя часть, поскольку последняя наиболее активно участвует в процессе.
Изобретение поясняется чертежом, на котором представлен общий вид устройства в разрезе, где 1 - корпус, выполненный из материала ПГС, 2 - контейнер, выполненный из полимерного материала, 3 - отверстия в крышке контейнера 2, 4 - таблетка, содержащая необходимую добавку, 5 - зазор в контейнере, 6 - чехол корпуса 1.
Работает заявляемое устройство следующим образом.
Добавку в виде водорастворимых таблетки или порошка размещают в контейнере с таким расчетом, чтобы осталось свободное пространство для образования насыщенного раствора. В предпочтительном варианте реализации свободный объем составляет не менее 0,1 объема контейнера. Добавкой служат соли кальция, магния, иодиды, витамины (в частности, аскорбиновая кислота) и другие источники элементов, которыми необходимо обогатить воду.
При погружении устройства в воду, жидкость через поры корпуса 1 и отверстия 3 попадает в контейнер 2, заполняет его и растворяет таблетку 4. В свободном пространстве контейнера 2 образуется насыщенный раствор, содержащий целевую добавку для введения в питьевую воду.
При реализации заявляемого устройства корпус был изготовлен из инертного пористого материала - полимера ПГС с порами размером 0,01 - 3 мкм, содержащего группировки β-резорциловой кислоты в количестве 2,4 мг-экв/г сухого вещества. Корпус размещен в чехле, выполненном из полипропилена.
Введение добавки в воду осуществляется практически в автоматическом режиме и позволяет, задав строго определенное время, получить заданную концентрацию.
Заявляемое устройство поясняется следующим примером.
Пример
Устройство, изготовленное согласно изобретению, использовали для минерализации воды ионами кальция и магния и обогащения иодом и аскорбиновой кислотой в статических условиях. Добавку в виде спрессованной смеси солей CaCl2•6Н2О, MgCl2•6Н2О, KJ и порошкообразной аскорбиновой кислоты размещали в контейнере, изготовленном из полиэтилена. В емкость наливали 10 л исходной воды, опускали туда устройство и при периодическим помешивании выдерживали 3 ч. Параметры исходной и обогащенной воды представлены в таблице.
Представленные данные свидетельствуют о том, что вода соответствует требованиям Сан. П и Н 2.. 1.4.559-996 и обогащена ионами кальция, магния, иодом и аскорбиновой кислотой.
Анализы воды выполнялись в соответствии со следующей нормативной документацией:
ГОСТ 2874-82. Вода питьевая. Гигиенические требования и контроль за качеством. ГОСТ 3351-74. Вода питьевая. Методы определения вкуса, запаха, цветности и мутности.
ГОСТ 4011-72. Вода питьевая. Методы измерения массовой концентрации общего железа.
ГОСТ 4974-72. Вода питьевая. Методы определения содержания марганца.
Необходимо заметить, что сложная, со множеством искривлений форма пор материала ПГС, из которого выполнен корпус устройства, позволяет достигнуть минимальных скоростей введения добавки в воду и получить концентрацию элементов, необходимых для здоровья, в количествах, усваиваемых организмом в максимальной степени. Такой подход в корне отличается от существующих методов оздоровления, при которых пациент выпивает ударную дозу целебной добавки, большая часть которой не усваивается организмом и впоследствии выводится из него.
Источники информации
1. Авторское свидетельство СССР 407840, 10.02.1973, С 02 В 1/06.
2. Авторское свидетельство СССР 1830385, 30.07.1993, С 02 F 1/68.
3. Патент FR 2722577 от 13.07.1994, G 01 N 31/00, C 02 F 1/68.
4. Патент FR 2809330, C 02 F 1/68.
5. Патент FR 2741871 от 13.01.1997, C 02 F 1/68.
6. Авторское свидетельство СССР 889627, 15.12.1981, C 02 F 1/68.
7. Авторское свидетельство СССР 1608138, 23.11.1990, C 02 F 1/68.
8. Патент RU 2123978 от 27.04.1998, C 02 F 1/68.
9. Патент RU 2131847 от 27.04.1998, C 02 F 1/68.
10. ЕР 1078885, C 02 F 1/28.
11. Заявка ЕР 0214854, 27.06.1989, C 02 F 1/28 - прототип.
12. Энциклопедия полимеров, М. , Издательство Советская Энциклопедия, 1972, с. 652.
13. Авторское свидетельство СССР 1378319, 23.05.1985, С 08 J 5/20, С 08 G 8/22.
14. Авторское свидетельство СССР 1023788, 24.10.1980, C 08 J 9/10.
название | год | авторы | номер документа |
---|---|---|---|
ФИЛЬТР ДЛЯ ОЧИСТКИ ВОДЫ | 2002 |
|
RU2206397C1 |
ПИТЬЕВАЯ ВОДА | 2004 |
|
RU2286953C2 |
УСТРОЙСТВО ДЛЯ СНИЖЕНИЯ ОБРАЗОВАНИЯ НАКИПИ | 2004 |
|
RU2261843C1 |
ПРОТОЧНЫЙ ФИЛЬТР | 2003 |
|
RU2257253C2 |
СПОСОБ ПРИГОТОВЛЕНИЯ ЦЕЛЕБНОЙ ПИТЬЕВОЙ ВОДЫ | 1998 |
|
RU2148031C1 |
ИСКУССТВЕННАЯ МИНЕРАЛИЗОВАННАЯ ПИТЬЕВАЯ ВОДА И СОСТАВ ДЛЯ ЕЕ ПРИГОТОВЛЕНИЯ | 1998 |
|
RU2134241C1 |
Функциональная питьевая вода "СМАРТ Аква" для снижения веса человека | 2020 |
|
RU2763194C1 |
Функциональная питьевая вода "СМАРТ Аква" для повышения иммунитета | 2020 |
|
RU2763189C1 |
БИОЛОГИЧЕСКИ АКТИВНАЯ ДОБАВКА ПРОТИВОАНЕМИЧЕСКОГО ДЕЙСТВИЯ "АНТИ-АНЕМИН" | 2001 |
|
RU2192872C1 |
Функциональная питьевая вода "СМАРТ Аква" для придания бодрости, сил и энергии человеку | 2020 |
|
RU2763187C1 |
Изобретение относится к водоподготовке и может быть использовано для получения в домашних условиях питьевой воды с физиологически необходимым (лечебным) содержанием целевых добавок, таких как микроэлементы, соли, витамины и др. Устройство для введения добавки в воду, включающее корпус и размещенный в нем контейнер с крышкой, содержит добавку. Крышка контейнера выполнена перфорированной. По меньшей мере верхняя часть корпуса устройства, контактирующая с перфорированной крышкой, выполнена из материала пространственно-глобулярной структуры. Высота верхней части корпуса не превышает 30% от высоты контейнера. Площадь отверстий перфорации - не более 2% от площади крышки контейнера. При этом объем твердой добавки не превышает 0,9 объема контейнера, выполненного из полимерного материала, а корпус дополнительно снабжен чехлом. Технический результат: создание устройства, позволяющего вносить добавки в широком интервале концентраций, доступного потребителю и простого в эксплуатации. 3 з.п. ф-лы, 1 ил., 1 табл.
УСТРОЙСТВО ДЛЯ СОЗДАНИЯ РАСТЯГИВАЮЩИХ УСИЛИЙ | 1967 |
|
SU214854A1 |
УСТРОЙСТВО ДЛЯ КОНТРОЛИРУЕМОГО НЕПРЕРЫВНОГО ДОЗИРОВАНИЯ ВЕЩЕСТВ | 1992 |
|
RU2021659C1 |
МАТЕРИАЛ ДЛЯ ВВЕДЕНИЯ В ПИТЬЕВУЮ ВОДУ ФИЗИОЛОГИЧЕСКИ НЕОБХОДИМЫХ НЕОРГАНИЧЕСКИХ ЭЛЕМЕНТОВ | 1998 |
|
RU2131847C1 |
Способ приготовления минерализованной питьевой воды | 1988 |
|
SU1608138A1 |
US 4678571 А, 07.04.1987. |
Авторы
Даты
2003-09-20—Публикация
2002-07-18—Подача