СПОСОБ УПРАВЛЕНИЯ ПЕРЕПУСКОМ ВОЗДУХА В КОМПРЕССОРЕ ДВУХВАЛЬНОГО ДВУХКОНТУРНОГО ГАЗОТУРБИННОГО ДВИГАТЕЛЯ Российский патент 2003 года по МПК F04D27/02 

Описание патента на изобретение RU2214535C2

Изобретение относится к области защиты от помпажа компрессоров двухвальных газотурбинных двигателей (ГТД).

Известны способы управления перепуском воздуха в компрессоре путем регулирования клапанов перепуска воздуха (КПВ) из-за различных ступеней компрессора по сигналам, характеризующим параметры, косвенно отражающие положение рабочей точки на характеристике компрессора, либо по сигналам датчиков помпажного или предпомпажного состояний [1].

Однако в ряде случаев известные способы не обеспечивают беспомпажную работу подпорных ступеней, что ведет к аварийной работе ГТД.

Известен способ управления перепуском воздуха в компрессоре ГТД с целью предупреждения помпажа, который предусматривает измерение частот вращения роторов высокого и низкого давлений (nвд, nнд), определение производной по времени и формирование сигнала на исполнительный механизм перепуска воздуха в компрессоре ГТД [2].

Однако при реализации данного способа на двигателе с КПВ за компрессором среднего давления на одном валу с вентилятором был выявлен принципиальный недостаток, делающий применение известного способа практически невозможным. Так, на двигателе ПС-90А при сбросе режима с максимального на "малый газ" или любой другой пониженный режим значение почти мгновенно падает ниже порогового значения, и поступает сигнал на открытие КПВ. Если это происходит на максимальном режиме или вблизи него, то текущее значение nвд может достичь величины nвдmax.

Даже кратковременное повышение nвд на 1,5% потребует съема двигателя ПС-90А с эксплуатации для ремонта вследствие недопустимых нагрузок на его детали.

Наиболее близким к предлагаемому техническому решению является способ управления перепуском воздуха в компрессоре двухвального двухконтурного ГТД, который предусматривает измерение частоты вращения ротора высокого давления (РВД) nвд, определение величины производной по времени частоты вращения ротора сравнение ее величины с соответствующим пороговым значением и формирование сигнала I1 на закрытие клапанов перепуска воздуха (КПВ), измерение полной температуры воздуха на входе в двигатель Твх, определение приведенной по Твх частоты вращения ротора РВД nвд.пр., сравнение ее величины с соответствующим пороговым значением nвд.прпорог и формирование сигнала I2 на закрытие КПВ, а также измерение угла установки рычага управления αруд, сравнение αруд с соответствующим пороговым значением αпорогруд

и формирование сигнала I3 на закрытие КПВ, при этом осуществляют определение величины разницы между максимальной величиной nвдmax непосредственно после открытия КПВ на максимальном режиме и программной максимальной величиной nвд.прогmax (Δnвдзабр) и при условии (nвд+Δnвдзабр)<nвд.прогmax формируют сигнал I5 на открытие КПВ, а сигнал I4 на закрытие КПВ формируют при наличии сигналов I1, I2, I3 [3].

При реализации данного способа на ГТД с клапанами перепуска воздуха за компрессором среднего давления, который размещен на одном валу с вентилятором, выявлен недостаток, затрудняющий применение способа в нештатных ситуациях, например, при самопроизвольном смещении лопаток входного направляющего аппарата ВНА компрессора высокого давления КВД.

Так, при закрытых клапанах перепуска воздуха и изменении положения ВНА на уменьшение расхода воздуха через КВД ниже определенной величины, работа компрессора среднего давления (КСД) становится неустойчивой.

Следствием неустойчивой работы КСД может быть вращающийся срыв КСД или помпаж КВД. Оба подобных явления могут привести к срыву и погасанию пламени в камере сгорания двигателя и, следовательно, к выключению двигателя, а при глубоком и длительном помпаже - к недопустимым по уровню вибраций и разрушениям элементов конструкции двигателя.

Как показали исследования на двигателе ПС-90А, срывные явления в КСД наблюдаются при рассогласовании между программным и фактическим углами положения ВНА, равном 20...30% от общего диапазона измерения углов положения ВНА. При рассогласовании свыше 40...50% и более возможен помпаж KBД.

В общем случае причинами нештатного изменения положения ВНА могут быть отказ исполнительного элемента управления ВНА, неисправность датчика положения ВНА и другие причины.

Техническая задача, решаемая изобретением, заключается в обеспечении безаварийной и беспомпажной работы двигателя за счет перепуска воздуха из внутреннего контура двигателя в наружный при наличии рассогласования между программным и фактическим углами положений лопаток входного направляющего аппарата компрессора выше предельно допустимой величины.

Сущность изобретения заключается в том, что в способе управления перепуском воздуха в компрессоре двухвального двухконтурного газотурбинного двигателя, включающем измерение частоты вращения ротора высокого давления (РВД) nвд, определение величины производной по времени частоты вращения ротора сравнение ее величины с соответствующим пороговым значением и формирование сигнала I1 на закрытие клапанов перепуска воздуха (КПВ), измерение полной температуры воздуха на входе в двигатель Твх, определение приведенной по Твх частоты вращения ротора РВД nвд.пр., сравнение ее величины с соответствующим пороговым значением nвд.прпорог и формирование сигнала I2 на закрытие КПВ, а также измерение угла установки рычага управления двигателем αруд, сравнение αруд с соответствующим пороговым значением αпорогруд

и формирование сигнала I3 на закрытие КПВ, при этом осуществляют определение величины разницы Δnвдзабр между максимальной величиной nвдmax непосредственно после открытия КПВ на максимальном режиме и программной максимальной величиной nвд.прогmax, и при условии (nвд+Δnвдзабр)<nвд.прогmax формируют сигнал I5 на открытие КПВ, а сигнал I4 на закрытие КПВ формируют при наличии сигналов I1, I2, I3, согласно изобретению дополнительно измеряют фактический угол положения лопаток компрессора входного направляющего аппарата (ВНА) αвна, сравнивают с соответствующим программным значением αпорогвна
и определяют величину рассогласования Δαвна = αпорогвна
вна, затем сравнивают величину Δαвна с предельно допустимой величиной Δαпредвна
и при условии Δαвна>Δαпредвна
формируют сигнал I6 на открытие КПВ и подают команду на открытие КПВ при поступлении сигнала I6 независимо от наличия сигнала I5.

При этом величину Δαпредвна

формируют в зависимости от термогазодинамических параметров двигателя. Термогазодинамическим параметром может служить частота вращения ротора высокого давления nвд или приведенная частота вращения ротора высокого давления nвд.пр, либо частота вращения ротора низкого давления nнд.

Кроме того, величину Δαпредвна

формируют в зависимости от параметров внешних условий полета, а параметром внешних условий полета служит величина давления воздуха на входе в двигатель.

На чертеже представлена блок-схема для осуществления предлагаемого способа.

Блок 1 представляет собой дифференциатор, в котором по величине nвд определяется ее производная по времени
Блок 2 - компаратор, в котором выполняется сравнение текущей величины с ее пороговым значением (для двигателя ПС-90А =-200 об/мин с).

При на выходе блока 2 формируется сигнал на закрытие КПВ (I1= 1), поступающий на вход блока 6. При на выходе блока 2 формируется сигнал I1=0.

Блок 3 представляет собой арифметическое устройство, на вход которого поступают сигналы о величине nвд и Твх, и производится вычисление
Блок 4 - компаратор, выполняющий функцию сравнения фактического значения nвд.пр с пороговым значением nвд.прпорог. При nвд.пр>nвд.прпорог на выходе блока 4 формируется сигнал на закрытие КПВ (I2=1), поступающий на вход блока 6.

Блок 5 представляет собой компаратор, выполняющий сравнение фактической величины угла установки рычага управления αруд с его пороговым значением Δαпорогруд

. При αрудпредруд
на выходе блока 5 формируется сигнал на закрытие КПВ (I3= 1), поступающий на вход блока 6. При αрудпредруд
на выходе блока 5 формируется сигнал I3=0.

Блок 6 представляет собой логическое устройство типа И, имеет три входа и один выход, подключенный к первому входу блока 11. При поступлении на три входа блока 6 сигналов I1=1, I2=1, I3=1 на выходе блока 6 формируется сигнал I4=1 на закрытие КПВ.

Блок 7 представляет собой сумматор, на вход которого поступает сигнал о текущей величине nвд, в нем определяется суммарная величина (nвд+Δnвдзабр), где Δnвдзабр - величина заброса nвд при открытии КПВ, т.е. разницы между максимальной величиной nвдmax непосредственно после открытия КПВ на максимальном режиме и программной максимальной величиной nвд.прогmax.

Блок 8 - компаратор, выполняющий сравнение величины (nвд+Δnвдзабр) и величины nвдmax. При выполнении соотношения (nвд+Δnвдзабр)<nвдmax на выходе компаратора формируется сигнал на открытие КПВ I5=1, поступающий на вход блока 11. При (nвд+Δnвдзабр)>nвдmax формируется сигнал I5=0.

Блок 9 представляет собой сумматор, имеющий два входа и один выход. На первый вход поступает сигнал о фактической величине угла положения лопаток компрессора входного направляющего аппарата (ВНА) αвна. На второй вход блока 9 поступает сигнал о величине программного значения αпредвна

Блок 9 осуществляет операцию вычитания этих величин и формирует сигнал о величине Δαвна, поступающий на вход блока 10. Как правило, при штатной работе регулятора положения ВНА величина составляет ±1 град.

Блок 10 представляет собой компаратор, имеющий два входа и один выход. На первый вход блока 10 поступает сигнал о фактической величине Δαвна. На второй вход блока 10 поступает сигнал о величине предельно допустимого значения этой величины. Величина Δαпредвна

. по модулю может превышать величину в 10 и более раз при штатной работе регулятора ВНА.

Для каждого типа двигателя Δαпредвна

носит индивидуальный характер и является функцией режима работы двигателя, термодинамических параметров двигателя, внешних условий полета и др.

При Δαвна>Δαпредвна

на выходе блока 10 формируется сигнал I6=1, поступающий на вход блока 11 и свидетельствующий о нештатной работе регулятора ВНА и возможном появлении помпажа.

Блок 11 представляет собой функциональное логическое устройство с тремя входами и одним выходом. Блок 11 при снятии сигнала I4 с блока 6 оценивает состояние сигнала I5, поступающего с блока 8. При поступлении на вход блока 11 сигнала I5=1 с выхода блока 11 снимается команда на закрытие КПВ и происходит их открытие. При отсутствии на втором входе блока 11 сигнала I5(nвд+Δnвдзабр)>nвдmax команда на закрытие клапанов перепуска воздуха не снимается, и только после появления на втором входе сигнала I5 (nвд+Δnвдзабр)<nвдmax с выхода блока 11 команда на закрытие КПВ снимается, происходит их открытие.

При наличии сигнала I4 и поступлении сигнала I6 на третий вход блока 11 (т. е. клапаны закрыты Δαвна>Δαпредвна

возникла нештатная ситуация) независимо от наличия на входе 11 сигнала I5 происходит снятие команды на закрытие клапанов перепуска воздуха. Происходит открытие клапанов.

Способ осуществляется следующим образом.

На остановленном двигателе в исходном состоянии КПВ открыты.

1. После запуска двигателя на малом газе nвд=0 об/мин с, т.е. nвд.пр<nвд.прпорог, αрудпредруд

(I1= 1, I2=0, I3=0). На выходе блока 6, работающего по схеме И, сигнал I4=0, поэтому КПВ остаются открытыми.

После перевода РУД, например, с малого газа на максимальный режим αрудпредруд

(I3=1) происходит увеличение режима работы двигателя. В процессе всей приемистости nвд>nвдпорог (I1=1). По мере увеличения частоты вращения и соблюдении условия (I2=1) на выходе блока 6 формируется сигнал I4=1. При поступлении на первый вход блока 11 сигнал I4=1 на выходе блока 11 формируется команда на закрытие КПВ.

2. При штатной работе регулятора ВНА открытие КПВ осуществляется при уменьшении режима работы двигателя, а именно при отсутствии любого из сигналов I1, I2, I3=0 и наличии сигнала I5=1 (аналогично прототипу).

3. При закрытых КПВ и нештатной работе регулятора ВНА Δαвна>Δαпредвна

, на выходе блока 10 формируется сигнал I6=1. Сигнал I6 поступает на третий вход блока 11. Команда на закрытие клапанов перепуска воздуха снимается, происходит их открытие. При открытии КПВ происходит открытие перепуска воздуха из проточной части (внутреннего контура) двигателя в его кольцевой канал (наружный контур). При этом запасы газодинамической устойчивости увеличиваются, помпаж не происходит.

Источники информации
1. Авиационный двухконтурный турбореактивный двигатель Д-30КУ. Техническое описание. - М.: Машиностроение, 1975.

2. Патент США 4449360, F 02 С 9/28, 1981.

3. Патент РФ 2098668, F 04 D 27/02.

Похожие патенты RU2214535C2

название год авторы номер документа
СПОСОБ УПРАВЛЕНИЯ ПЕРЕПУСКОМ ВОЗДУХА В КОМПРЕССОРЕ ДВУХВАЛЬНОГО ДВУХКОНТУРНОГО ГАЗОТУРБИННОГО ДВИГАТЕЛЯ 1995
  • Панков А.Г.
  • Савенков Ю.С.
  • Трубников Ю.А.
  • Кухорчук В.Г.
RU2098668C1
СПОСОБ АВАРИЙНОЙ ЗАЩИТЫ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ ПРИ ОТКАЗАХ И НЕИСПРАВНОСТЯХ 2005
  • Саженков Алексей Николаевич
  • Савенков Юрий Семенович
  • Тимкин Юрий Иванович
  • Трубников Юрий Абрамович
RU2305788C2
СПОСОБ ЗАЩИТЫ КОМПРЕССОРА ПРИ НЕУСТОЙЧИВОЙ РАБОТЕ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ 2003
  • Саженков А.Н.
  • Савенков Ю.С.
  • Тимкин Ю.И.
  • Трубников Ю.А.
RU2255247C1
СПОСОБ ЗАЩИТЫ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ ОТ ПОМПАЖА КОМПРЕССОРА 2023
  • Саженков Алексей Николаевич
  • Савенков Юрий Семенович
  • Якушев Алексей Павлович
RU2801768C1
СПОСОБ УПРАВЛЕНИЯ ДОЗИРОВАНИЕМ ТОПЛИВА НА ЗАПУСКЕ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ 2006
  • Гольцов Николай Германович
  • Ипполитов Валерий Георгиевич
  • Трубников Юрий Абрамович
RU2316664C1
УСТРОЙСТВО ДЛЯ РЕГУЛИРОВАНИЯ ПЕРЕПУСКА ВОЗДУХА ИЗ КОМПРЕССОРА ГАЗОТУРБИННОГО ДВИГАТЕЛЯ САМОЛЕТА 2001
  • Панков А.Г.
  • Полатиди С.Х.
  • Савенков Ю.С.
  • Саженков А.Н.
  • Трубников Ю.А.
RU2215908C2
СПОСОБ ЗАЩИТЫ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ ОТ ВОЗНИКНОВЕНИЯ НЕУСТОЙЧИВОЙ РАБОТЫ КОМПРЕССОРА 2006
  • Саженков Алексей Николаевич
  • Савенков Юрий Семенович
  • Тимкин Юрий Иванович
  • Трубников Юрий Абрамович
RU2310100C2
СПОСОБ УПРАВЛЕНИЯ ГАЗОТУРБИННЫМ ДВИГАТЕЛЕМ НА ДИНАМИЧЕСКИХ РЕЖИМАХ РАЗГОНА И ДРОССЕЛИРОВАНИЯ 2006
  • Савенков Юрий Семенович
  • Саженков Алексей Николаевич
  • Тимкин Юрий Иванович
  • Трубников Юрий Абрамович
RU2337250C2
СПОСОБ УПРАВЛЕНИЯ ГАЗОТУРБИННЫМ ДВИГАТЕЛЕМ 2010
  • Дудкин Юрий Петрович
  • Гладких Виктор Александрович
  • Фомин Геннадий Викторович
RU2468257C2
Способ автоматической защиты газотурбинного двигателя от помпажа 2022
  • Саженков Алексей Николаевич
  • Савенков Юрий Семенович
RU2789806C1

Реферат патента 2003 года СПОСОБ УПРАВЛЕНИЯ ПЕРЕПУСКОМ ВОЗДУХА В КОМПРЕССОРЕ ДВУХВАЛЬНОГО ДВУХКОНТУРНОГО ГАЗОТУРБИННОГО ДВИГАТЕЛЯ

Изобретение относится к области защиты от помпажа компрессоров двухвальных газотурбинных двигателей (ГТД). Техническая задача, решаемая изобретением, заключается в обеспечении безаварийной и беспомпажной работы двигателя за счет перепуска воздуха из внутреннего контура двигателя в наружный при наличии рассогласования между программным и фактическим углами положений лопаток входного направляющего аппарата компрессора выше предельно допустимой величины. Это достигается тем, что дополнительно измеряют фактический угол положения лопаток компрессора входного направляющего аппарата (ВНА) αвна, сравнивают с соответствующим программным значением αпрогвна

и определяют величину рассогласования затем сравнивают величину Δαвна с предельно допустимой величиной Δαпредвна
и при условии Δαвна>Δαпредвна
формируют сигнал 16 на открытие клапанов перепуска воздуха (КПВ) и подают команду на открытие КПВ при поступлении сигнала 16 независимо от наличия сигнала 15. 6 з.п. ф-лы, 1 ил.

Формула изобретения RU 2 214 535 C2

1. Способ управления перепуском воздуха в компрессоре двухвального двухконтурного газотурбинного двигателя, включающий измерение частоты вращения ротора высокого давления (РВД) nвд, определение величины производной по времени частоты вращения ротора nвд, сравнение ее величины с соответствующим пороговым значением nвдпорог и формирование сигнала I1 на закрытие клапанов перепуска воздуха (КПВ), измерение полной температуры воздуха на входе в двигатель Твх, определение приведенной по Твх частоты вращения ротора РВД nвд.пр, сравнение ее величины с соответствующим пороговым значением nвд.прпорог и формирование сигнала I2 на закрытие КПВ, а также измерение угла установки рычага управления двигателем αруд, сравнение αруд с соответствующим пороговым значением αпорогруд

и формирование сигнала I3 на закрытие КПВ, при этом осуществляют определение величины разницы Δnзабрвд
между максимальной величиной nвдmах непосредственно после открытия КПВ на максимальном режиме и программной максимальной величиной nвд.махпорог и при условии (nвд+Δnвдзабр)<nвд.махпрог формируют сигнал I5 на открытие КПВ, а сигнал I4 на закрытие КПВ формируют при наличии сигналов I1, I2, I3, отличающийся тем, что дополнительно измеряют фактический угол положения лопаток компрессора входного направляющего аппарата (ВНА) αвна, сравнивают с соответствующим программным значением αпорогвна
и определяют величину рассогласования Δαвна = αпорогвна
вна, затем сравнивают величину Δαвна с предельно допустимой величиной Δαпредвна
и при условии Δαвна>Δαпредвна
формируют сигнал I6 на открытие КПВ и подают команду на открытие КПВ при поступлении сигнала I6 независимо от наличия сигнала I5. 2. Способ по п.1, при котором величину Δαпредвна
формируют в зависимости от термогазодинамических параметров двигателя.
3. Способ по п.2, при котором термогазодинамическим параметром служит частота вращения ротора высокого давления nвд. 4. Способ по п.2, при котором термогазодинамическим параметром служит приведенная частота вращения ротора высокого давления nвд.пр. 5. Способ по п.2, при котором термогазодинамическим параметром служит частота вращения ротора низкого давления nнд. 6. Способ по п.1, при котором величину Δαпредвна
формируют в зависимости от параметров внешних условий полета.
7. Способ по п.6, при котором параметром внешних условий полета служит величина давления воздуха на входе в двигатель.

Документы, цитированные в отчете о поиске Патент 2003 года RU2214535C2

СПОСОБ УПРАВЛЕНИЯ ПЕРЕПУСКОМ ВОЗДУХА В КОМПРЕССОРЕ ДВУХВАЛЬНОГО ДВУХКОНТУРНОГО ГАЗОТУРБИННОГО ДВИГАТЕЛЯ 1995
  • Панков А.Г.
  • Савенков Ю.С.
  • Трубников Ю.А.
  • Кухорчук В.Г.
RU2098668C1
ТУРБОКОМПРЕССОР 1993
  • Гельмедов Ф.Ш.
  • Локштанов Е.А.
  • Ольштейн Л.Е.-М.
  • Сидоркин М.А.
RU2034175C1
Способ обнаружения предпомпажного режима центробежного компрессора 1979
  • Акульшин Юрий Дмитриевич
  • Измайлов Рудольф Александрович
  • Селезнев Константин Павлович
  • Чернов Валерий Николаевич
SU773314A1
US 4595340 A, 17.06.1986
ЭНЕРГОЭФФЕКТИВНОЕ ОТАПЛИВАЕМОЕ ЗДАНИЕ С ТЕПЛИЦЕЙ 2015
  • Ризванов Салават Фанзилович
RU2606891C1
GB 1522975, 31.08.1978.

RU 2 214 535 C2

Авторы

Князева Н.Р.

Савенков Ю.С.

Саженков А.Н.

Трубников Ю.А.

Даты

2003-10-20Публикация

2001-07-05Подача