СОСТАВ ДЛЯ ДОБЫЧИ НЕФТИ ИЗ НЕОДНОРОДНОГО НЕФТЯНОГО ПЛАСТА Российский патент 2003 года по МПК E21B43/22 

Описание патента на изобретение RU2215870C2

Изобретение относится к области нефтедобывающей промышленности, в частности к составам для добычи нефти из неоднородного нефтяного пласта путем закачки в пласт полимерных растворов.

Известен способ добычи нефти из неоднородного нефтяного пласта с помощью водных растворов полимера концентрацией 0,03-0,05% (М.Л. Сургучев. Вторичные и третичные методы увеличения нефтеотдачи пластов. - М.: Недра, 1985, с. 156-165.).

Недостатком способа является сравнительно низкая его эффективность вследствие адсорбции полимера и разрушения его солеными водами.

Наиболее близким по технической сущности к предлагаемому составу является способ добычи нефти (А.с. 1645472, Е 21 В 43/22, опубл. БИ 16, 1991 г.) путем закачки в пласт состава на основе водорастворимого анионного полимера и соли поливалентного катиона при следующем соотношении компонентов, мас.%:
Водорастворимый анионный полимер - 0,01-5,00
Соль поливалентного катиона - 0,003-0,20
Вода - Остальное
Добавка соли поливалентного катиона приводит к сшивке полимера, что значительно улучшает его реологические свойства.

Однако способ предусматривает подкисление раствора полимера до рН 0,5-2,5 перед введением в него соли поливалентного катиона с целью улучшения его фильтрационных свойств. В системе, содержащей водорастворимый полимер анионного типа и соль поливалентного катиона, подкисленной до величины рН менее 2,5, полимер и катион соли не связаны в единый комплекс, т.к. при этом рН сшивка анионного полимера не происходит, поскольку молекулы анионного полимера находятся в неионизированном состоянии. Предполагается, что при движении состава по пласту он будет нейтрализован как щелочными компонентами пласта, так и от разбавления водой, в результате произойдет сшивка полимера.

Однако одновременно с увеличением рН в пласте будет происходить снижение исходных концентраций компонентов. Кроме того, при достижении определенного рН может начаться гидролиз соли поливалентного катиона. Например, сернокислый алюминий подвергается гидролизу уже при величине рН более или равной 4 с образованием гидроокиси алюминия, не растворимой в воде. В таком виде он не сможет участвовать в сшивке полимерных молекул.

Кроме того, будет происходить адсорбция полимерных молекул на породе, слагающей пласт. Все сказанное может привести не только к уменьшению содержания полимера и соли поливалентного катиона в растворе, но и к изменению их соотношения по сравнению с исходным (закачиваемым в пласт) составом.

Таким образом, одновременно с процессом повышения рН раствора будут протекать другие, конкурирующие с ним процессы, препятствующие в ряде случаев образованию сшитой системы.

Основанием для такого утверждения служат результаты, полученные при проведении лабораторных исследований.

Технической задачей предлагаемого решения является повышение эффективности воздействия состава при добыче нефти из неоднородного нефтяного пласта за счет улучшения фильтрационных свойств состава, при уменьшении расхода дорогостоящих компонентов.

Поставленная задача достигается тем, что состав для добычи нефти из неоднородного нефтяного пласта, включающий смесь анионного полимера и соли поливалентного катиона и воду, содержит воду с содержанием солей до 280 г/л, а смесь имеет эквивалентное отношение указанного катиона к анионному звену полимера 0,01-1,07 и рН 4-10, при следующем соотношении компонентов, мас.%:
Анионный полимер - 0,001-0,08
Соль поливалентного катиона - 0,0005-0,002
Указанная вода - Остальное
Как показывает сопоставление прототипа и предлагаемого составов содержание компонентов, в частности дорогостоящего полимера, в предлагаемом составе в 10 и более раз меньше, чем в прототипе.

Кроме экономического преимущества, такое уменьшение концентраций исходных компонентов дает существенный положительный эффект: в отличие от прототипа предлагаемый состав не требует подкисления до величин рН, равных 0,5-2,5, что увеличивает эффективность воздействия состава за счет упрощения технологии его применения, улучшения фильтрационных свойств состава и его устойчивости к разбавлению водой.

При смешивании водорастворимого анионного полимера и соли поливалентного катиона в указанных (гомеопатических) количествах имеющихся макромолекул полимера недостаточно для образования пространственной структуры, равномерно распределенной по всему объему. Согласно лабораторным исследованиям в таких условиях образуются микрогелевые частицы, которые можно представить в виде капсул, средний размер которых составляет 0,85-0,35 мкм. Внутренняя часть таких частиц содержит воду (до 50% от общей массы таких частиц), а оболочка состоит из полимерных молекул, соединенных друг с другом ("сшитых") поливалентным катионом.

Такие полимерно-гелевые капсулы свободно располагаются в водной фазе и не связаны друг с другом, о чем свидетельствуют низкие величины динамической вязкости этих систем, мало отличающиеся от вязкости полимерных растворов, не содержащих сшиватель. Однако вязкоупругие свойства капсулированных полимерных систем возрастают в некоторых случаях на несколько порядков.

Образующиеся по предлагаемому составу полимерные капсулы способны двигаться вглубь пласта по высокопроницаемой его части на значительные расстояния, накапливаясь постепенно в крупных порах и изолируя их. Проникнуть в мелкие поры или перекрыть их полимерные капсулы не могут из-за большего размера своих частиц и невысокого содержания их в воде. Благодаря этому происходит перераспределение потоков фильтрующегося по пласту нефтевытесняющего агента и улучшение выработки участка нефтяного пласта и как следствие повышение нефтеотдачи.

Предлагаемый состав был испытан в лабораторных условиях. При этом были использованы следующие материалы.

1. В качестве анионного полиакриламида - Alcoflood-935 (Af) и Accotrol-S622 (At): первый из них характеризуется низкой молекулярной массой (М. м. = 6,1 млн.D) и низкой степенью гидролиза (А=6,2 мол.%); второй - высокомолекулярный полиакриламид (М. м.=12,9 млн.D) с высокой степенью гидролиза (А=16,0 мол.%).

2. Сернокислый алюминий (СКА) - А12(SO4)3•18Н2O марки "чда". Концентрации при приготовлении растворов сернокислого алюминия рассчитывали на исходный продукт.

3. Хлорное железо (ХЖ) - FеС13•6Н2О, марки "ч".

4. Вода техническая, минерализацией 0,5 г/л и сточная, минерализацией 100 и 280 г/л.

В качестве параметра фильтрационных свойств состава, характеризующего вязкоупругие свойства полимерных растворов, использовали величины скрин-фактора (Сф), замеряемые на вискозиметре конструкции Гипровостокнефть по стандартной методике (РД-39-0148311-206-85).

В таблице 1 приведены величины динамической вязкости и скрин-фактора предлагаемых составов.

Как видно из приведенных данных, несмотря на низкую динамическую вязкость предлагаемые составы показывают хорошие вязко-упругие свойства (в некоторых случаях составы даже не фильтруются через скрин-вискозиметр).

Далее было изучено, как изменяются свойства предлагаемых и известных составов при разбавлении их водой. Результаты приведены в таблице 2.

Анализ приведенных в таблице 2 данных позволяет сделать вывод о том, что предлагаемый состав выдерживает большое разбавление водой - более чем 250-кратное). Составы же по прототипу, которые обязательно должны разбавляться для нейтрализации кислоты, не выдерживают гораздо меньшего разбавления. Если сравнить два состава - предлагаемый и прототип, то видно, насколько сильно они различаются по своим вязкоупругим свойствам в пользу предлагаемого состава.

Таким образом, проведенные исследования наглядно показывают эффективность воздействия предлагаемого состава и его преимущества в сравнении с прототипом.

Исходя из проведенных исследований, можно рекомендовать следующие концентрации исходных реагентов: по полимеру 0,001-0,08 %, по соли алюминия или железа 0,0005-0,002%.

Выбор концентраций полимера и соли поливалентного металла был обусловлен следующими соображениями. Верхняя его граница - получением относительно однородных, кинетически и агрегативно устойчивых систем при введении в полимерный раствор соли поливалентного металла. Нижняя концентрационная граница - получением эффекта, заключающегося в улучшении технологических свойств водных полимерных систем от ввода сшивателя. При этом, чем больше концентрация полимера, тем больше должна быть концентрация соли алюминия или железа.

В промысловых условиях состав применяют следующим образом.

Участок нефтяного пласта представлен пластами различной проницаемости и разбурен, как минимум, одной нагнетательной и одной добывающей скважинами. Разработка участка ведется путем закачки воды с кустовой насосной станции.

Проводят серию геофизических и гидродинамических исследований, на основе которых определяют концентрацию и объем оторочки состава на основе полимера и соли поливалентного металла. Состав готовят на поверхности: сначала готовят по отдельности раствор полимера в закачиваемой с КНС воде и раствор соли алюминия или железа.

Раствор полимера с добавлением раствора соли насосом высокого давления подают в водовод и на скважину. Раствор соли дозируют в раствор полимера, исходя из стехиометрического соотношения для получения оптимальной концентрации сшитого полимера. После закачки расчетного количества состава в скважину закачивают воду.

Предлагаемый состав был испытан на участке Западно-Лениногорской площади Ромашкинского месторождения с 8-ю нагнетательными скважинами, расположенном в районе КНС-16. Участок представлен пластами "б1", "б2" и "в" горизонта Д1. Добыча велась 22-мя скважинами при среднем дебите нефти 2 т/сут. и с обводненностью продукции 94%. В среднем в каждую нагнетательную скважину было закачано 2000 м3 состава с ПАА и сернокислым алюминием. Использовалась сточная вода минерализацией 90 г/л с рН 5,5.

В процессе закачки происходило постепенное снижение приемистости нагнетательных скважин, что свидетельствует о росте фильтрационного сопротивления пласта. В результате удельная приемистость скважин снизилась в среднем в 2 раза.

Технико-экономическое преимущество предлагаемого состава в сравнении с прототипом заключается в снижении расхода дорогостоящего полимера при одновременном увеличении эффективности воздействия его за счет улучшения вязкоупругих свойств.

Похожие патенты RU2215870C2

название год авторы номер документа
СПОСОБ ДОБЫЧИ НЕФТИ 2005
  • Хисамов Раис Салихович
  • Ханнанов Рустам Гусманович
  • Файзуллин Ильфат Нагимович
  • Уваров Сергей Геннадьевич
  • Гаффаров Шамиль Каюмович
  • Варламова Елена Ивановна
  • Рахматулина Миннури Нажибовна
  • Ганеева Зильфира Мунаваровна
RU2292450C1
СПОСОБ РАЗРАБОТКИ НЕОДНОРОДНОГО НЕФТЯНОГО ПЛАСТА 2010
  • Ибатуллин Равиль Рустамович
  • Кубарев Николай Петрович
  • Ризванов Рафгат Зиннатович
  • Хисамов Раис Салихович
  • Фролов Александр Иванович
  • Фархутдинов Гумар Науфалович
  • Ханнанов Рустэм Гусманович
  • Болгов Сергей Анатольевич
  • Оснос Владимир Борисович
RU2418156C1
СПОСОБ РЕГУЛИРОВАНИЯ ЗАВОДНЕНИЯ НЕФТЯНЫХ ПЛАСТОВ 2001
  • Мусабиров Р.Х.
  • Доброскок Б.Е.
  • Хисамов Р.С.
  • Кубарева Н.Н.
  • Ганеева З.М.
RU2204705C1
СПОСОБ РЕГУЛИРОВАНИЯ ЗАВОДНЕНИЯ НЕОДНОРОДНОГО НЕФТЯНОГО ПЛАСТА 2010
  • Ибатуллин Равиль Рустамович
  • Кубарев Николай Петрович
  • Ханнанов Рустем Гусманович
  • Хисамов Раис Салихович
  • Фархутдинов Гумар Науфалович
  • Файзуллин Илфат Нагимович
  • Ризванов Равгат Зинатович
RU2436941C1
СПОСОБ ДОБЫЧИ НЕФТИ 2011
  • Хисамов Раис Салихович
  • Файзуллин Илфат Нагимович
  • Ибатуллин Равиль Рустамович
  • Варламова Елена Ивановна
  • Ганеева Зильфира Мунаваровна
  • Хисаметдинов Марат Ракипович
  • Ризванов Рафгат Зиннатович
  • Михайлов Андрей Валерьевич
  • Федоров Алексей Владиславович
RU2485301C1
СПОСОБ РАЗРАБОТКИ ОБВОДНЕННЫХ НЕФТЯНЫХ ЗАЛЕЖЕЙ С ЗОНАЛЬНО-НЕОДНОРОДНЫМИ И РАЗНОПРОНИЦАЕМЫМИ ПЛАСТАМИ 2001
  • Князев Д.В.
  • Абдулмазитов Р.Г.
RU2208139C1
СПОСОБ РАЗРАБОТКИ НЕОДНОРОДНОГО НЕФТЯНОГО ПЛАСТА 2005
  • Ибатуллин Равиль Рустамович
  • Уваров Сергей Геннадьевич
  • Хисаметдинов Марат Ракипович
  • Глумов Иван Фоканович
  • Слесарева Валентина Вениаминовна
  • Рахимова Шаура Газимьяновна
  • Хисамов Раис Салихович
  • Андриянова Ольга Михайловна
  • Кубарев Николай Петрович
  • Гаффаров Шамиль Каюмович
RU2298088C1
СПОСОБ РЕГУЛИРОВАНИЯ ПРОФИЛЯ ПРИЕМИСТОСТИ НАГНЕТАТЕЛЬНОЙ СКВАЖИНЫ И ОГРАНИЧЕНИЯ ВОДОПРИТОКА В ДОБЫВАЮЩЕЙ СКВАЖИНЕ 2007
  • Ибатуллин Равиль Рустамович
  • Хисамов Раис Салихович
  • Хисаметдинов Марат Ракипович
  • Ганеева Зильфира Мунаваровна
  • Абросимова Наталья Николаевна
  • Яхина Ольга Александровна
RU2347897C1
СПОСОБ РАЗРАБОТКИ НЕОДНОРОДНОГО НЕФТЯНОГО ПЛАСТА 2010
  • Амерханов Марат Инкилапович
  • Береговой Антон Николаевич
  • Рахимова Шаура Газимьяновна
  • Золотухина Валентина Семеновна
  • Файзуллин Илфат Нагимович
  • Васильев Эдуард Петрович
RU2424426C1
СПОСОБ РАЗРАБОТКИ НЕФТЯНОГО ПЛАСТА 2003
  • Ибатуллин Р.Р.
  • Глумов И.Ф.
  • Слесарева В.В.
  • Уваров С.Г.
  • Хисамов Р.С.
  • Рахимова Ш.Г.
  • Золотухина В.С.
  • Мусабиров Р.Х.
RU2244812C1

Иллюстрации к изобретению RU 2 215 870 C2

Реферат патента 2003 года СОСТАВ ДЛЯ ДОБЫЧИ НЕФТИ ИЗ НЕОДНОРОДНОГО НЕФТЯНОГО ПЛАСТА

Изобретение относится к области нефтедобывающей промышленности, в частности к добыче нефти из неоднородного нефтяного пласта путем закачки в пласт полимерных растворов. Состав для добычи нефти из неоднородного нефтяного пласта, включающий смесь анионного полимера и соли поливалентного катиона и воду, содержит воду с содержанием солей до 280 г/л, а смесь имеет эквивалентное отношение указанного катиона к анионному звену полимера 0,01-1,07 и рН 4-10 при следующем соотношении компонентов, мас.%: анионный полимер 0,001-0,08; соль поливалентного катиона 0,0005-0,002; указанная вода - остальное. Техническим результатом является повышение эффективности разработки неоднородного нефтяного пласта за счет улучшения реологических свойств используемого состава, расширение области применения за счет использования минерализованной воды и упрощение технологии приготовления состава за счет исключения подщелачивания. 2 табл.

Формула изобретения RU 2 215 870 C2

Состав для добычи нефти из неоднородного нефтяного пласта, включающий смесь анионного полимера и соли поливалентного катиона и воду, отличающийся тем, что он содержит воду с содержанием солей до 280 г/л, а смесь имеет эквивалентное отношение указанного катиона к анионному звену полимера 0,01-1,07 и рН 4-10 при следующем соотношении компонентов, мас. %:
Анионный полимер - 0,001-0,08
Соль поливалентного катиона - 0,0005-0,002
Указанная вода - Остальное

Документы, цитированные в отчете о поиске Патент 2003 года RU2215870C2

Способ добычи нефти 1989
  • Городнов Владимир Павлович
  • Рыскин Александр Юрьевич
  • Кощеев Игорь Геннадьевич
SU1645472A1
ЖАРОПРОЧНЫЙ СПЛАВ НА ОСНОВЕ НИКЕЛЯ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ ЭТОГО СПЛАВА 1999
  • Латышев В.Б.
  • Моисеев С.А.
  • Каблов Е.Н.
RU2164959C1
СОСТАВ ДЛЯ ЗАВОДНЕНИЯ НЕОДНОРОДНО-ПРОНИЦАЕМЫХ НЕФТЯНЫХ ПЛАСТОВ 1999
  • Яковлев С.А.
  • Матющенко Б.Е.
  • Сидоров Л.С.
  • Валеева Г.Х.
  • Тахаутдинов Р.Ш.
  • Халиуллин Ф.Ф.
  • Закиров А.Ф.
  • Магалимов А.А.
RU2160363C1
СПОСОБ РАЗРАБОТКИ ОБВОДНЕННОЙ НЕФТЯНОЙ ЗАЛЕЖИ 2000
  • Старкова Н.Р.
  • Бриллиант Л.С.
  • Куракин В.И.
  • Чернавских С.Ф.
RU2169256C1
Композиция на основе полиакриламида 1983
  • Лукманова Римма Зариповна
  • Алмаев Рафаэль Хатмуллович
  • Абдрахманов Ильдус Бареевич
  • Шарафутдинов Вакиль Мулькаманович
SU1137101A1
US 3762476 A, 02.10.1973.

RU 2 215 870 C2

Авторы

Глумов И.Ф.

Слесарева В.В.

Кубарев Н.П.

Ибатуллин Р.Р.

Уваров С.Г.

Андриянова О.М.

Хисамов Р.С.

Файзуллин И.Н.

Кандаурова Г.Ф.

Даты

2003-11-10Публикация

2001-07-18Подача