Изобретение относится к области ядерной энергетики, в частности регулирования глубины выгорания ядерного топлива, и может быть использовано в любой момент кампании канального ядерного реактора.
Известен способ осуществления топливного цикла канального ядерного реактора, заключающийся в том, что из активной зоны реактора выгружают выгоревшие тепловыделяющие сборки (ТВС) с урановым топливом и на их место помещают тепловыделяющие сборки со свежим урановым топливом. В промежутках между перегрузками ТВС (или в случае отказа перегрузочной машины либо по другим технологическим причинам, препятствующим перегрузке) для компенсации выгорания ТВС из активной зоны извлекают органы системы управления и защиты (СУЗ) [1, 2] . В качестве органа СУЗ используют подвижный (перемещаемый в вертикальном направлении канала СУЗ) стержень-вытеснитель и стержень-поглотитель, объединенные в единый орган телескопическим соединением либо жесткой втулкой (в дальнейшем по тексту стержень СУЗ). Для охлаждения стержня СУЗ используется легкая вода, которая занимает объем между вытеснителем и поглотителем, а также между стержнем СУЗ и стенкой канала СУЗ. Согласно указанному способу дополнительные поглотители (ДП) находятся в активной зоне в течение всей кампании ядерного реактора, а часть (до ~10% от общего количества) стержней СУЗ полностью вводят в активную зону. Такое решение позволило получить безопасную для работы реактора величину парового коэффициента реактивности < 1β. Однако присутствие ДП и полностью погруженных стержней СУЗ, в сущности выполняющих роль ДП, приводит к потерям в глубине выгорания ~20÷25% и увеличению топливной составляющей приведенных затрат почти на 25÷30%, что существенно ухудшает экономические показатели эксплуатации реактора. Кроме того, из-за ускоренной выгрузки ТВС из реактора резко увеличились объемы ТВС с отработавшим топливом (ОТВС), что приводит к быстрому заполнению бассейнов выдержки (БВ) и хранилищ отработавшего ядерного топлива (ХОЯТ). Из-за того что сборки имеют глубину выгорания ниже проектной, подкритичность БВ и ХОЯТ уменьшается, что снижает их безопасность. Кроме того, полностью погруженные стержни выведены из процесса управления полем энерговыделения, уменьшают эффективность аварийной защиты и увеличивают риск повреждения ТВС в случае самопроизвольного перемещения из активной зоны (самоход стержня). Известен способ осуществления топливного цикла канального реактора, при котором на место выгоревших тепловыделяющих сборок кроме свежих ставят также выгоревшие сборки, но с меньшей глубиной выгорания (топливо повторного использования) [3] . Дожигание топлива повторного использования в реакторе позволяет получить некоторую экономию свежего топлива, однако при этом остается проблема обеспечения безопасности реактора путем поддержания величины парового коэффициента реактивности < 1β, для чего в активной зоне сохраняются ДП.
Наиболее близким аналогом способу является способ [4], заключающейся в том, что в процессе осуществления топливного цикла ядерного канального реактора, предусматривающем выполнение операций на реакторе по загрузке, выгрузке, программным перестановкам тепловыделяющих сборок и извлечению дополнительных поглотителей нейтронов из технологических каналов выделенных зон активной зоны реактора, а также установки вместо отработавших тепловыделяющих сборок, сборки - содержащие топливо с распределенным в нем поглотителем нейтронов, а вместо дополнительных поглотителей устанавливают частично выгоревшие тепловыделяющие сборки, подлежащие программной перестановке. Кроме того, в технологические каналы, предназначенные для дополнительных поглотителей нейтронов, устанавливают частично выгоревшие тепловыделяющие сборки с глубиной выгорания 1500÷2000 МВт•сут [4].
Недостатком данного способа является невозможность достижения максимальной величины выгорания при наличии части стержней СУЗ, полностью введенных в активную зону. Извлечь органы СУЗ при данном способе тоже не представляется возможным с точки зрения безопасности - резко возрастает эффект обезвоживания контура охлаждения СУЗ (КО СУЗ) и с некоторой задержкой по времени увеличивается паровой эффект реактивности.
Задача, решаемая данным изобретением, заключается в достижении максимально возможной глубины выгорания ТВС, сокращении числа перегрузок, повышении свойств внутренней самозащищенности реактора, повышении экономической эффективности топливного цикла.
Сущность заявляемого изобретения состоит в том, что в способе осуществления топливного цикла ядерного канального реактора формированием активной зоны загрузкой тепловыделяющих сборок с распределенным поглотителем нейтронов, в процессе программных перестановок и извлечений тепловыделяющих сборок, программных перемещений стержней системы управления и защиты, и замены дополнительных поглотителей на частично выгоревшие тепловыделяющие сборки, предложено, в процессе работы реактора, после выгрузки всех дополнительных поглотителей, часть полностью погруженных стержней системы управления и защиты заменить на стержни кластерной конструкции, а в качестве топлива с распределенным поглотителем нейтронов использовать уран - эрбиевое топливо начального обогащения по U235 на 0,2÷0,5% выше начального обогащения уран-эрбиевого топлива, загруженного до извлечения стержней системы управления и защиты.
Принципиальная конструкция стержней кластерной конструкции известна и представляет собой неподвижный вытеснитель (полая труба, стационарно установленная в канале СУЗ), в котором размещается пучок тонких поглотителей [5]. Для охлаждения стержня СУЗ кластерной конструкции требуется в несколько раз (~4 раза) меньше воды, чем для охлаждения стержней СУЗ с подвижным вытеснителем и поглотителем. Поэтому эффект обезвоживания КО СУЗ снижается ~ в 4 раза. По физической эффективности стержни СУЗ кластерной конструкции не отличаются от стержней СУЗ с подвижным вытеснителем и поглотителем. Однако извлечение полностью погруженных в активную зону стержней СУЗ сопровождается увеличением парового эффекта реактивности практически так же, как и извлечение ДП. Для компенсации парового эффекта реактивности, при условии достижения указанного эффекта от перехода к стержням кластерной конструкции, предлагается использовать уран-эрбиевое топливо с начальной концентрацией по U235 на 0,2÷0,5% выше, чем начальное обогащение уран-эрбиевого топлива до извлечения стержней. Уран-эрбиевое топливо сильнее снижает паровой эффект, это удается сделать с помощью ДП или стержней СУЗ. Использование предлагаемого способа позволяет повысить эффективность топливного цикла на 5÷15%.
Эксплуатацию реактора с учетом предлагаемого способа осуществляют следующим образом. После того как все дополнительные поглотители заменены на частично выгоревшие ТВС с урановым топливом их заменяют, известным способом, на ТВС с уран-эрбиевым топливом (ЭТВС). Это позволяет несмотря на выгрузку ДП и замены их на частично выгоревшие ТВС сохранить значение парового коэффициента реактивности на уровне исходного значения. В дальнейшем, извлекают полностью погруженные стержни системы управления и защиты, заменяя их на стержни кластерной конструкции, при этом в качестве топлива ЭТВС используют уран-эрбиевое топливо начального обогощения по урану и эрбию на 0,2÷0,5% выше, чем начальное обогащение уран-эрбиевого топлива до извлечения стержней.
Использование изобретения приводит к повышению глубины выгорания топлива, к снижению расхода топливных сборок и тем самым затрат на их приобретение и транспортировку, хранение отработавшего топлива, его переработку и захоронение. Все это приводит к повышению экономичности топливного цикла.
Литература
1. Адамов Е.О. и др. Повышение безопасности АЭС с РБМК. -Атомная энергия, 1987, т. 62, вып. 4, с. 219 - 226.
2. Доллежаль Н.А., Емельянов И.Я. Канальный ядерный энергетический реактор. Атомиздат 1980 г., с. 21-36.
3. Еперин А.П., Рябов В.И., Варовин И.А. и др. Перегрузка топлива на реакторах Ленинградской АЭС.- Атомная энергия, 1985, т.58, вып.4, с.219-220.
4. Патент РФ 2117341 на изобретение, 29.05.1997 г. (ближайший аналог).
5. И.Н. Аборина. Физические исследования реакторов ВВЭР. Атомиздат. 1978 г., с. 66-73.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ОСУЩЕСТВЛЕНИЯ ТОПЛИВНОГО ЦИКЛА ЯДЕРНОГО КАНАЛЬНОГО РЕАКТОРА | 2001 |
|
RU2218612C2 |
СПОСОБ ОСУЩЕСТВЛЕНИЯ ТОПЛИВНОГО ЦИКЛА ЯДЕРНОГО КАНАЛЬНОГО РЕАКТОРА | 1997 |
|
RU2117341C1 |
СПОСОБ ОСУЩЕСТВЛЕНИЯ ЯДЕРНОГО ТОПЛИВНОГО ЦИКЛА КАНАЛЬНОГО РЕАКТОРА С ГРАФИТОВЫМ ЗАМЕДЛИТЕЛЕМ | 2002 |
|
RU2239247C2 |
Способ осуществления топливного цикла ядерного канального реактора | 2020 |
|
RU2743211C1 |
СПОСОБ ОСУЩЕСТВЛЕНИЯ ТОПЛИВНОГО ЦИКЛА ЯДЕРНОГО КАНАЛЬНОГО РЕАКТОРА | 2007 |
|
RU2347292C1 |
СПОСОБ ПЕРЕГРУЗКИ ТЕПЛОВЫДЕЛЯЮЩИХ СБОРОК ПРИ КОНТРОЛЕ ТЕХНОЛОГИЧЕСКИХ КАНАЛОВ НА ВОДОГРАФИТОВЫХ ЯДЕРНЫХ РЕАКТОРАХ | 2000 |
|
RU2182734C1 |
АКТИВНАЯ ЗОНА И ТЕПЛОВЫДЕЛЯЮЩАЯ СБОРКА КАНАЛЬНОГО ЯДЕРНОГО РЕАКТОРА (ВАРИАНТЫ) | 2000 |
|
RU2176827C2 |
СПОСОБ ОСУЩЕСТВЛЕНИЯ ТОПЛИВНОГО ЦИКЛА ЯДЕРНОГО КАНАЛЬНОГО РЕАКТОРА | 2013 |
|
RU2545029C2 |
СПОСОБ ЗАМЕНЫ ТЕХНОЛОГИЧЕСКИХ КАНАЛОВ НА ВОДОГРАФИТОВЫХ ЯДЕРНЫХ РЕАКТОРАХ | 1998 |
|
RU2132091C1 |
СПОСОБ ОСУЩЕСТВЛЕНИЯ ТОПЛИВНОГО ЦИКЛА ЯДЕРНОГО КАНАЛЬНОГО РЕАКТОРА | 1994 |
|
RU2083004C1 |
Изобретение относится к области ядерной энергетики, в частности регулированию глубины выгорания ядерного топлива, и может быть использовано в любой момент кампании канального ядерного реактора. Способ включает формирование активной зоны загрузкой тепловыделяющих сборок с распределенным поглотителем нейтронов в процессе программных перемещений и извлечений тепловыделяющих сборок, программных перемещений стержней системы управления и защиты и замены дополнительных поглотителей на частично выгоревшие тепловыделяющие сборки. В процессе работы реактора после выгрузки всех дополнительных поглотителей часть полностью погруженных стержней системы управления и защиты заменяют на стержни кластерной конструкции. В качестве топлива с распределенным поглотителем нейтронов используют уран-эрбиевое топливо начального обогащения по U235 на 0,2÷0,5% выше начального обогащения уран-эрбиевого топлива, загруженного до извлечения стержней системы управления и защиты. Технический результат: достижение максимально возможной глубины выгорания тепловыделяющих сборок, сокращение числа перегрузок, повышение свойств внутренней самозащищенности реактора, повышение экономической эффективности топливного цикла.
Способ осуществления топливного цикла ядерного канального реактора формированием активной зоны загрузкой тепловыделяющих сборок с распределенным поглотителем нейтронов в процессе программных перестановок и извлечений тепловыделяющих сборок, программных перемещений стержней системы управления и защиты и замены дополнительных поглотителей на частично выгоревшие тепловыделяющие сборки, отличающийся тем, что в процессе работы реактора после выгрузки всех дополнительных поглотителей часть полностью погруженных стержней системы управления и защиты заменяют на стержни кластерной конструкции, а в качестве топлива с распределенным поглотителем нейтронов используют уран-эрбиевое топливо начального обогащения по U235 на 0,2÷0,5% выше начального обогащения уран-эрбиевого топлива, загруженного до извлечения стержней системы управления и защиты.
СПОСОБ ОСУЩЕСТВЛЕНИЯ ТОПЛИВНОГО ЦИКЛА ЯДЕРНОГО КАНАЛЬНОГО РЕАКТОРА | 1997 |
|
RU2117341C1 |
СПОСОБ ЭКСПЛУАТАЦИИ УРАН-ГРАФИТОВОГО ЯДЕРНОГО РЕАКТОРА | 1996 |
|
RU2100852C1 |
СПОСОБ ЭКСПЛУАТАЦИИ ЛЕГКОВОДНОГО КОРПУСНОГО ЯДЕРНОГО РЕАКТОРА | 1992 |
|
RU2046406C1 |
DE 1921528 A, 23.08.1973 | |||
US 4687620 A, 18.08.1987 | |||
ЕПЕРИН А.П | |||
и др | |||
Перегрузка топлива на реакторах Лениградской АЭС | |||
Атомная энергия, Москва, Энергоатомиздат, 1985, т | |||
Способ окисления боковых цепей ароматических углеводородов и их производных в кислоты и альдегиды | 1921 |
|
SU58A1 |
Очаг для массовой варки пищи, выпечки хлеба и кипячения воды | 1921 |
|
SU4A1 |
Прибор для записи звуковых волн | 1920 |
|
SU219A1 |
Авторы
Даты
2003-12-10—Публикация
2001-12-26—Подача