СПОСОБ ТЕПЛОИЗОЛЯЦИИ ТРУБОПРОВОДА Российский патент 2003 года по МПК F16L59/06 F16L59/08 

Описание патента на изобретение RU2219425C1

Способ теплоизоляции трубопроводов относится к тепловой защите и может применяться в различных отраслях народного хозяйства для энергоресурсосбережения, преимущественно для трубопроводов подачи пара и горячей воды потребителям, а также в строительстве.

Протяженность трубопроводного транспорта ограничивается гидравлическими и тепловыми потерями, величина которых сказывается на снижении эффективности централизованного теплоснабжения, удорожании выработки тепловой энергии, и может привести к потере качества теплоносителя, не позволяющей его дальнейшее использование в технологическом процессе.

Для горячей воды решающим фактором в потере качества является рост гидравлических потерь, для пара, наоборот, в силу его малой плотности рост тепловых потерь опережает нарастание гидравлических потерь. Тепловые потери, снижая температуру пара, изменяют его состояние - из перегретого он переходит в насыщенное, из сухого насыщенного - в смесь пара и воды.

По этой причине, а также ввиду безудержного роста цен на топливо задача снижения тепловых потерь приобретает главное значение в теплоснабжении.

Единственным способом снижения тепловых потерь является увеличение термического сопротивление изоляции. Термическое сопротивление изоляционных изделий создается теплопроводностью используемого материала и толщиной изоляционного слоя. Предельная толщина регламентируется "Инструкцией по проектированию тепловой изоляции оборудования и трубопроводов промышленных предприятий" СН 542-81.

Известен "Способ установки тепловой изоляции на трубопровод" по А.С. 1606798 F 16 L 59/05 от 16.03.88, заключающийся в размещении на трубопроводе жестких теплоизоляционных панелей в виде сегментов, металлопокрытий, скрепления последнего крепежными элементами и подкладывании под них дискретно по окружности трубопровода упругих элементов.

По патенту РФ 2095679 известны также "Теплогидроизоляционный элемент и способ теплогидроизоляции металлических трубопроводов" F 16 L 59/00 от 01.06.95, при котором на трубу укладывают слой изоляционного материала в виде цилиндров и полуцилиндров, имеющих покрытие на внутренней цилиндрической поверхности, теплоотражающее зеркальное покрытие для получения различных значений коэффициентов теплопроводности.

Наиболее близким по технической сущности является SU 1427145 A1, кл. F 16 L 59/06, 30.09.1988, в котором раскрыт способ теплоизоляции трубопровода, при котором формируют замкнутые воздушные полости. Для этого на трубопровод устанавливают опорные кольца, затем между опорными кольцами размещают оболочки из отражающего теплопроводного материала (лучеотражательные экраны) один над другим.

Задачей предлагаемого технического решения является снижение тепловых потерь, увеличение термического сопротивления изоляции, ослабление лучистого теплообмена и исключение свободной конвекции, простота осуществления, возможность использования при ремонте существующих теплотрасс, улучшение экологии работ.

Поставленная задача решается за счет способа теплоизоляции трубопровода путем ослабления лучистого теплообмена и исключения конвекции между трубопроводом и окружающей средой с помощью размещенных между трубопроводом и защитной оболочкой замкнутых воздушных полостей, образованных между установленными на трубопроводе опорными кольцами и прикрепленными к ним один над другим с зазором экранами из отражающего теплопроводного материала, при этом зазор δ между экранами из отражающего теплопроводного материала определяют в зависимости от предварительно рассчитанного числа Рэлея Ra*, находящегося в пределах Ra*<104, а в качестве защитной оболочки используют стальную трубу, внутренняя поверхность которой покрыта теплоотражающим составом, например алюминиевой пудрой, а наружная - нетеплопроводным материалом, например пенополиуретаном.

Предлагаемый способ теплоизоляции трубопроводов построен на принципе использования свойств воздуха, заключенного в создаваемые экранными оболочками и торцевыми асбестовыми уплотнениями замкнутые воздушные полости.

В замкнутых воздушных полостях расчетной толщины многослойной воздушной изоляции воздух пребывает в неподвижном состоянии, что позволяет использовать его низкую теплопроводность для формирования кондуктивного теплового потока. Свободная конвекция в полостях такой толщины не присутствует. Лучистый теплообмен ослабляется экранами, расположенными друг над другом из материала с повышенной отражающей способностью.

Использование физических свойств неподвижного воздуха как изолятора позволяет повысить термическое сопротивление изоляционной конструкции в два раза в сравнении с типовыми изделиями.

Повышенное термическое сопротивление новой изоляции может быть востребовано при решении следующих инженерных задач: расширении границ поставки пара без снижения его качества, что в определенных случаях может оказаться решающим доводом в вопросах целесообразности строительства новых источников теплоснабжения: снижении тепловых потерь при транспорте пара по существующим сетям. Применение новой изоляции позволяет снизить тепловые потери в два раза в сравнении с типовыми конструкциями, и в четыре раза - в сравнении с нормативными потерями: поддержанием на всем протяжении транспорта гомогенности (однородного состава) паровой среды, что необходимо для точного измерения расхода пара.

При транспорте горячей воды новую изоляцию, изготовленную предложенным способом, можно использовать как для снижения тепловых потерь, так и для снижения материальных затрат (при сохранении нормативных потерь).

К преимуществам предлагаемого способа теплоизоляции трубопровода следует отнести: экологичность изделий и облегчение труда изолировщиков ввиду отсутствия сыпучей и раздражающей кожу минеральной ваты; нейтральность изоляции по отношению к металлу трубы даже в случае ее повреждения; при намокании минеральной ваты, что случается особенно часто в подземных сетях, образуется кислотная среда с рН<7,0, приводящая к разрушению металла труб; при нашем способе даже при затоплении лотков труба находится в гарантированном сухом состоянии; повышенная устойчивость создаваемой предложенным способом теплоизоляции против электромагнитной коррозии, вызванной блуждающими токами ввиду наличия экранов и отсутствия контактов их с трубой; применение диэлектриков (резиновых прокладок) под опоры конструкции и во фланцевых разъемах увеличивает независимость конструкции от блуждающих токов.

Совокупность предложенных существенных признаков нова и позволяет снизить тепловые потери, увеличить термическое сопротивление изоляции, ослабить лучистый теплообмен и исключить свободную конвекцию, упростить осуществление работ, использовать при ремонте существующих теплотрасс.

На чертеже изображен изолированный по заявляемому способу трубопровод, где 1 - трубопровод пара или горячей воды, 2 - асбестовые уплотнения, 3 - замкнутые воздушные полости, 4 - опорное кольцо из асбоцемента, 5 - защитная оболочка из двух полуцилиндров из пенобетона, 6 - крепежные кольца из вязальной проволоки, 7 - экраны из жесткой фольги или полированного алюминия, 8 - резиновые уплотнительные манжеты, 9 - бандаж.

Способ теплоизоляции трубопровода путем ослабления лучистого теплообмена и исключения конвекции между трубопроводом и окружающей средой осуществляется в следующей последовательности. После нанесения антикоррозионного покрытия на трубопровод пара или горячей воды 1 накладывают теплоотражающий теплопроводный материал 6, например алюминиевую фольгу, для уменьшения коэффициента излучения; на нее в месте установки опорного кольца 4 укладывают асбестовое уплотнение 2. На уплотнение 2 накладывают опорное кольцо 4 из асбоцемента. Между опорными кольцами 4 размещают для ослабления лучистого теплообмена один над другим с рассчитанным по нижеуказанной формуле воздушным зазором экраны 7 из отражающего теплопроводного материала, например из жесткой фольги или полированного алюминия. Толщина зазора для исключения конвекционного теплообмена выбирается в зависимости от величины числа Рэлея, определяющего в свою очередь коэффициент конвекции. При числе Рэлея<104 коэффициент конвекции равен 1,0, т.е. конвективный теплообмен отсутствует. Между опорными кольцами 4 и экранами 7 образуются замкнутые воздушные полости, в которых отсутствует конвективный теплообмен. Каждый экран 7 прикрепляют к опорному кольцу 4 и закрепляют крепежными кольцами 6 из вязальной проволоки. На опорные кольца 4 укладывают полуцилиндры защитной оболочки 5 и стягивают бандажом 9. В местах стыковки полуцилиндров 5 размещают резиновые уплотнительные манжеты 8 для исключения конвекции воздуха.

Термическое сопротивление теплоизоляционных конструкций создается теплопроводностью используемого для изоляции материала и толщиной изоляционного слоя. Теплопроводность минеральной ваты (основного материала, применяемого при изоляции паропроводов), определенная по формуле
λ = λ0+β•tср,
лежит в пределах 0,064-0,079 Вт/мoС для средних температур теплоносителя 150-250oС.

Максимально достижимые величины термических сопротивлений изоляции из минеральной ваты приведены в таблице. Там же показаны сопротивления новой, созданной предлагаемым способом к внедрению многослойной воздушной изоляции. Толщина изоляции принята одинаковой для обеих изоляций. Расчеты проведены для одиночного паропровода при надземной прокладке с температурой пара 150-250oС.

В случае использования многослойной воздушной изоляции в границах действующих нормативных тепловых потерь применение ее становится рациональным как для пара, так и для горячей воды: достигается существенная экономия материальных затрат, так как конструкция самой изоляции значительно упрощается - уменьшается количество экранов до 1-3 шт.

По данным исследований для прослоек различной формы коэффициент конвекции находится в следующей зависимости от числа Рэлея:
Ra*<104•εk ≈ 1,0; где δ - толщина прослойки; - отношение длины пути конвективного тока к его проекции на вертикальную ось.

Для горизонтальных цилиндрических слоев
I = (n•R1+δ):(Д-δ);
где R1 - радиус внутренней стенки;
Д - внешний диаметр полости.

n1=3: n2=0
Учитывая, что n2=0,
.

Для вертикальных цилиндрических слоев =1, а значит Ra*=Ra.

Результаты расчетов сведены в таблицы 1 и 2.

Похожие патенты RU2219425C1

название год авторы номер документа
Теплоизоляционное ограждение 1981
  • Ким Лаврентий Николаевич
SU1032134A1
СПОСОБ ОСЛАБЛЕНИЯ ВОЗДЕЙСТВИЯ ПОТОКА ЭНЕРГИИ В ВИДЕ СВЕТА, ТЕПЛА И КОНВЕКТИВНЫХ ГАЗОВЫХ ПОТОКОВ НА ЗАЩИЩАЕМЫЕ ОБЪЕКТЫ 2004
  • Страхов Валерий Леонидович
  • Крутов Александр Михайлович
  • Мельников Анатолий Сергеевич
RU2284202C1
ХОЛОДИЛЬНИК ДЛЯ ПИЩЕВЫХ ПРОДУКТОВ 2005
  • Бабакин Сергей Борисович
  • Тихонов Борис Сергеевич
RU2296278C2
Стеновая панель 1979
  • Никин Валерий Павлович
  • Кирильчик Геннадий Викторович
  • Антипов Владимир Владимирович
  • Загорский Валерий Емельянович
SU872682A1
Камера для термической обработки капиллярно-пористых материалов 1977
  • Березовский Борис Иванович
  • Подгорнов Николай Иосифович
  • Авдеева Ирина Георгиевна
SU771070A1
УСТРОЙСТВО ДЛЯ ТЕПЛОИЗОЛЯЦИИ НАРУЖНЫХ ОГРАЖДАЮЩИХ КОНСТРУКЦИЙ 1998
  • Калядин Ю.А.
  • Бирулина П.Ю.
  • Румянцева И.А.
  • Дмитриев А.Н.
  • Соколов А.Б.
  • Белавин Ф.С.
RU2129639C1
СТРОИТЕЛЬНЫЙ НАБОРНЫЙ ВЕРТИКАЛЬНО-ЩЕЛЕВОЙ КАМЕНЬ С ГАЗОСЛОЙНОЙ ТЕПЛОИЗОЛЯЦИЕЙ 1998
  • Топорков В.П.
  • Топорков Н.В.
RU2162501C2
Способ теплоизоляции трубопровода 2018
  • Кузьбожев Александр Сергеевич
  • Шишкин Иван Владимирович
  • Бирилло Игорь Николаевич
  • Шкулов Сергей Анатольевич
  • Маянц Юрий Анатольевич
  • Елфимов Александр Васильевич
RU2703897C1
Теплоизоляционный текстильный материал с высокой отражательной способностью 2018
  • Алексеенко Геннадий Анатольевич
  • Нестеренко Алексей Вячеславович
  • Филиппов Дмитрий Иванович
  • Филиппов Андрей Дмитриевич
  • Родовниченков Сергей Петрович
RU2692274C1
Способ изготовления труб с комбинированной тепловой изоляцией для теплотрасс 2017
  • Яруллин Анвар Габдулмазитович
  • Валиков Эдуард Владимирович
  • Багманов Рустам Раисович
  • Будник Ольга Юрьевна
  • Нарышкин Евгений Борисович
RU2661563C2

Иллюстрации к изобретению RU 2 219 425 C1

Реферат патента 2003 года СПОСОБ ТЕПЛОИЗОЛЯЦИИ ТРУБОПРОВОДА

Изобретение относится к тепловой защите и может применяться в различных отраслях народного хозяйства для энергоресурсосбережения, преимущественно для трубопроводов подачи пара и горячей воды потребителям, а также в строительстве. Техническим результатом изобретения является снижение тепловых потерь, увеличение термического сопротивления изоляции, ослабление лучистого теплообмена и исключение свободной конвекции, простота осуществления, возможность использования при ремонте существующих теплотрасс, улучшение экологии работ. Это решается за счет способа теплоизоляции трубопровода путем ослабления лучистого теплообмена и исключения конвекции между трубопроводом и окружающей средой с помощью размещенных между трубопроводом и защитной оболочкой замкнутых воздушных полостей, образованных между установленными на трубопроводе опорными кольцами и прикрепленными к ним один над другим с зазором экранами из отражающего теплопроводного материала, при этом зазор δ между экранами из отражающего теплопроводного материала определяют в зависимости от предварительно рассчитанного числа Рэлея Ra*, находящегося в пределах Ra*<104, а в качестве защитной оболочки используют стальную трубу, внутренняя поверхность которой покрыта теплоотражающим составом, например алюминиевой пудрой, а наружная - нетеплопроводным материалом, например пенополиуретаном. 1 ил., 2 табл.

Формула изобретения RU 2 219 425 C1

Способ теплоизоляции трубопровода путем ослабления лучистого теплообмена и исключения конвекции между трубопроводом и окружающей средой с помощью размещенных между трубопроводом и защитной оболочкой замкнутых воздушных полостей, образованных между установленными на трубопроводе опорными кольцами и прикрепленными к ним один над другим с зазором экранами из отражающего теплопроводного материала, отличающийся тем, что зазор δ между экранами из отражающего теплопроводного материала определяют в зависимости от предварительно рассчитанного числа Рэлея Rа*, находящегося в пределах Ra*<104, а в качестве защитной оболочки используют стальную трубу, внутренняя поверхность которой покрыта теплоотражающим составом, например, алюминиевой пудрой, а наружная - нетеплопроводным материалом, например пенополиуретаном.

Документы, цитированные в отчете о поиске Патент 2003 года RU2219425C1

Теплопровод 1987
  • Панкина Светлана Федоровна
  • Сендерович Юлий Санникович
  • Самохвалов Юрий Михайлович
  • Сиванбаев Альберт Васильевич
SU1427145A1
Труба 1985
  • Жан-Клод Фор
SU1386043A3
Теплоизолированная труба 1989
  • Яковлев Гарий Васильевич
  • Лифшиц Михаил Генрихович
SU1716246A1
ТРАФАРЕТНАЯ ПЕЧАТНАЯ ФОРМА ДЛЯ СОЛНЕЧНОГО ЭЛЕМЕНТА И СПОСОБ ПЕЧАТИ ЭЛЕКТРОДА СОЛНЕЧНОГО ЭЛЕМЕНТА 2012
  • Эндо Йоко
  • Митта Рио
  • Ватабе Такенори
  • Оцука Хироюки
RU2597573C2
КУТАТЕЛАДЗЕ С.И
Теплопередача и гидродинамическое сопротивление
Справочное пособие
- М.: Энергоатомиздат, 1990 г.

RU 2 219 425 C1

Авторы

Алексеев В.А.

Грязнов К.Н.

Даты

2003-12-20Публикация

2002-11-20Подача