ПОЛИМЕРНАЯ КОМПОЗИЦИЯ ДЛЯ ПОЛУЧЕНИЯ МАКРОПОРИСТОГО АГАРОЗНОГО ГЕЛЯ И СПОСОБ ЕГО ПОЛУЧЕНИЯ Российский патент 2004 года по МПК C08L5/12 C08J3/02 

Описание патента на изобретение RU2220987C2

Изобретение относится к технологии высокомолекулярных соединений, а именно к полимерным гелям и способам их получения.

Более конкретно изобретение касается макропористых гелей на основе агарозы - нейтрального полисахарида, входящего в состав агар-агара. Наиболее эффективно заявляемые материалы могут быть использованы в биотехнологии в качестве гелевой матрицы для получения хроматографических носителей, предназначенных для работы с биологическими наночастацами, или для приготовления плотных сред для культивирования растительных и животных клеток.

Агароза и гидрогели на ее основе широко используются в прикладной биохимии и биотехнологии. Известны агарозные гели биотехнологического назначения, которые находят применение в качестве гелевой основы хроматографических носителей [Каталог фирмы "Amersham Pharmacia Biotech" (Швеция), 1998. С. 185. ], сред для электрофореза или иммунодиффузии [Л.А. Остерман. "Методы исследования белков и нуклеиновых кислот" М.: Наука, 1981. С.16] и др. Эти гелевые материалы получают охлаждением горячих (60-98oС) 0,3-6% водных растворов агарозы до 40-20oС. При этом исходные растворы гелеобразующего полимера могут содержать растворимые добавки типа буферных солей, детергентов и др. [Л. А. Остерман. "Методы исследования белков и нуклеиновых кислот" М.: Наука, 1981. С. 16]. После охлаждения таких растворов данного полисахарида получаются гели с размером пор, позволяющим диффундировать в них макромолекулам с массой порядка 106-108 дальтон и размерами не более 10 нм [Каталог фирмы "Amersham Pharmacia Biotech" (Швеция), 1998. С.185; Л.А. Остерман. "Методы исследования белков и нуклеиновых кислот" М.: Наука, 1981. С.16]. Однако более крупные объекты, например биологические наночастицы типа крупных плазмид, белковых мицелл, вирусов или даже целых клеток из-за своих больших размеров (100-1000 нм) практически не проникают в подобные агарозные гели (далее "обычные" агарозные гели). Поэтому такие гели только с низкой эффективностью могут быть использованы для работы с биологическими наночастицами.

Известны хроматографические носители на основе "обычных" гелей агарозы для биоаффинного разделения клеток [Каталог фирмы "Amersham Pharmacia Biotech" (Швеция), 1998. С.6]. Это - сферические гранулы (диаметр 250-350 мкм) агарозного геля с пришитыми к ним аффинными лигандами. Взаимодействие клеток и биоаффинных гуппировок таких биосорбентов происходит только по поверхности частиц носителя, емкость которого поэтому очень низкая, т.к. внутренние области гранул "обычного" агарозного геля не доступны для проникновения в них столь крупных сорбатов, как целые клетки.

Один из путей преодоления этого недостатка "обычных" агарозных гелей - придание им макропористой морфологии с взаимосвязанными крупными порами размером больше, чем размеры биологических наночастиц. В этом случае появляется возможность использовать для взаимодействия агарозного геля с указанными биологическими наночастицами не только поверхность гелевой матрицы, но и ее внутреннее пространство.

Известны так называемые "суперпористые" (superporous) агарозные гели и способ их получения, приводящий к формированию макропористой морфологии гелевых материалов на основе агарозы, обладающих крупными порами размерами 20-200 или 0,5-500 мкм [P.-O.Larsson, Super porous polysaccharide gels. // WO 93/19115 (1993); P.-E.Gustavsson, P.-O.Larsson, Continuous superporous agarose beds for chromatography and electrophoresis. // J. Chromatogr. A. V. 832. 1. Р. 29-39 (1999)]. Получения этих гелей включает следующие основные стадии:
а) приготовление водного раствора агарозы;
б) приготовление эмульсии типа "масло в воде" (стабилизированная детергентом фаза органического растворителя, диспергированная в водной фазе);
в) гелеобразование содержащей агарозу водной фазы при снижении температуры;
г) удаление органической фазы промывкой образовавшегося макропористого агарозного геля определенной системой растворителей.

Сначала готовят водный раствор агарозы (предпочтительно, 6%-ный) при 95-100oС, который затем охлаждают до 60oС. Далее проводят смешение (с контролируемой скоростью) этого горячего (60oС) раствора с несовместимым с водой органическим растворителем (выбранным из группы: циклогексан, гептан, толуол) и неионным детергентом, например Tween 80 (смешанный триолеиновый и монодидекаэтиленгликольный эфир сорбита), при объемном соотношении указанных компонентов 100:100:6, с последующим перемешиванием в течение 4 мин при 1000 об/мин. Затем понижают температуру системы до 20-25oС, что приводит к желированию агарозы. В итоге образуется двухфазный гель, крупные сообщающиеся поры которого заполнены раствором детергента в органическом растворителе (чаще всего используется циклогексан), выполняющего таким образом роль органического порообразователя. Для удаления органической фазы полученный гель промывают большим количеством 50%-ного спирта и окончательно - дегазированной водой. Полученный таким образом макропористый гелевый материал (он может быть приготовлен в виде гранул, диска или блока) обладает развитой системой макропор с размерами большими, чем биологические наночастицы, и поэтому может быть использован в качестве основы для приготовления сорбентов (например, биоаффинных), предназначенных для работы с указанными биологическими объектами.

Это техническое решение, как наиболее близкое к заявляемому по структуре конечного продукта, принято за прототип.

Данный прототип имеет следующие недостатки.

1. Исходная композиция для получения "суперпористых" агарозных гелей по способу-прототипу включает большой объем (равный объему раствора агарозы) легковоспламенящейся жидкости (ЛВЖ: циклогексан, гептан или толуол), которая к тому же является дорогим органическим растворителем, но фактически используется только однократно, т. к. после формирования целевого геля органический порообразователь вымывается 50%-ным спиртом. При этом органический растворитель сильно разбавляется, что делает его регенерацию абсолютно нецелесообразной. Наличие же в исходной композиции еще и значительных количеств детергента (6 об.% от объема раствора агарозы) требует использования больших объемов промывной жидкости для удаления поверхностно-активного вещества из геля. При этом дорогой детергент, как и органический порообразователь, используется однократно и не регенерируется. В целом присутствие в промывных водах органического растворителя и ПАВ превращает стоки производства прототипа - "суперпористого" агарозного геля - в экологически опасные, особенно в случае использования толуола в качестве органического порообразователя.

2. Способ-прототип сложен, многостадиен и малотехнологичен. Как показали проверочные эксперименты, наиболее плохо воспроизводимой стадией является процесс получения эмульсии органической фазы в растворе агарозы. В зависимости от объема и формы сосуда, в котором проводится высокоскоростное смешивание компонентов исходной композиции, а также формы и размеров мешалки, получаются различные по своим свойствам (размерам макропор) целевые агарозные гели. Поэтому в каждом конкретном случае необходимо проводить дополнительный трудоемкий подбор режимов перемешивания.

3. Способ-прототип характеризуется высокой пожаро- и взрывоопасностью, поскольку при скоростном перемешивании горячих (60oС) жидкостей, одна из которых является горючим органическим растворителем, образуется много паров ЛВЖ. Так как для перемешивания обычно используются мешалки с электромоторами, то даже малейшего искрения движущихся частей электромотора достаточно для воспламенения этих паров.

Задачей предлагаемого изобретения является получение макропористого агарозного геля простым, технологичным, пожаробезопасным и экологически чистым способом.

Указанная задача решается тем, что композиция для получения макропористого агарозного геля содержит агарозу, воду и водорастворимую добавку, выбранную из группы: мочевина, N-метилмочевина, ацетамид, гуанидин-гидрохлорид, гидроксид щелочного металла или аммония, роданид щелочного металла или аммония, при следующем соотношении компонентов, мас.%: агароза 1-5; водорастворимая добавка 2-50; вода до 100. Способ получения макропористого агарозного геля заключается в том, что ингредиенты композиции растворяют в воде, полученный раствор замораживают при температуре -5...-50oС, выдерживают в замороженном состоянии 1-24 ч и размораживают с последующей промывкой полученного макропористого агарозного геля водой.

Согласно заявляемому изобретению размораживание проводится с использованием общепринятых методик размораживания. Единственным ограничением является то, что температура, при которой проводится оттаивание образцов, не должна превышать температуру плавления самих агарозных криогелей, т.е. быть не выше 70-75oС, в противном случае не достигается необходимый технический результат - образуется раствор агарозы, а не макропористый криогель.

Получаемый макропористый агарозный гель имеет макропоры размером от 0,01 до 1 мм (10-1000 мкм). Согласно заявляемому способу макропористый агарозный гель может быть приготовлен любой геометрической формы: в виде блоков, пластин, дисков, гранул, частиц неправильной формы (получаются измельчением блока), трубок и др. Промывные воды, в случае применения щелочной водорастворимой добавки в составе исходной композиции, могут быть нейтрализованы прибавлением водного раствора минеральной кислоты (например, соляной, азотной или серной).

Конкретные примеры заявляемых составов и режимов получения целевых макропористых агарозных гелей приведены в таблице.

Заявляемое техническое решение имеет следующие преимущества перед прототипом.

1. Композиция для получения макропористого агарозного геля не содержит ЛВЖ и ПАВ, поэтому состав композиции существенно проще, чем в прототипе, т. е. в заявляемом техническом решении достигается цель упрощения состава исходной композиции. Кроме того, для получения целевого продукта - "суперпористого" агарозного геля - в способе прототипе требуется проведение специальной стадии тщательно контролируемого смешения исходных ингредиентов, тогда как в заявляемом техническом решении исходная композиция представляет собой просто раствор ингредиентов, для получения которого необходимы самые простые операции, не требующие соблюдения каких-то строго детерминированных режимов перемешивания.

2. Поскольку исходная композиция в заявляемом техническом решении не содержит органических растворителей, плохо совместимых с водной средой, и ПАВ, то для промывки получаемых макропористых агарозных гелей от применяемых добавок, хорошо растворимых в воде, не требуется использования больших объемов промывной жидкости. Таким образом достигается упрощение стадии промывки целевого продукта. Используемые в заявляемом техническом решении водорастворимые добавки являются биоразлагаемыми, с которыми легко справляются существующие системы очистки сточных вод. В случае добавок щелочной природы последние перед сливом в очистные сооружения разбавляются и нейтрализуются добавлением минеральной кислоты, поэтому сточные промывные воды в этом случае представляют собой просто разбавленные водные растворы биогенных солей.

3. Заявляемый способ включает меньшее число стадий по сравнению со способом-прототипом. Фактически новый способ включает только три стадии: приготовление водного раствора исходных ингредиентов, его замораживание в заявляемых режимах и промывку после оттаивания. Роль порообразователя в заявляемом техническом решении выполняют кристаллы льда, образующиеся при замораживании исходного раствора, а не специально привносимый большой объем органического порообразователя, как в способе-прототипе. Поэтому заявляемый способ по сравнению со способом-прототипом более технологичен.

4. Заявляемый способ характеризуется практически полной пожаро- и взрывобезопасностью, поскольку не предусматривает использования ЛВЖ ни на одной из стадий процесса.

Наиболее эффективно заявляемые материалы могут быть использованы в биотехнологии в качестве хроматографических или адсорбционных матриц, предназначенных для работы с биологическими наночастицами, а также для приготовления плотных сред для культивирования растительных и животных клеток.

Похожие патенты RU2220987C2

название год авторы номер документа
ПОЛИМЕРНАЯ КОМПОЗИЦИЯ ДЛЯ ПОЛУЧЕНИЯ КРИОГЕЛЯ ПОЛИВИНИЛОВОГО СПИРТА 2003
  • Лозинский В.И.
  • Дамшкалн Л.Г.
RU2252945C1
КОМПОЗИЦИЯ ДЛЯ ФОРМИРОВАНИЯ МАКРОПОРИСТОГО НОСИТЕЛЯ, ИСПОЛЬЗУЕМОГО ПРИ ТРЕХМЕРНОМ КУЛЬТИВИРОВАНИИ КЛЕТОК ЖИВОТНЫХ ИЛИ ЧЕЛОВЕКА, И СПОСОБ ПОЛУЧЕНИЯ УКАЗАННОГО НОСИТЕЛЯ 2015
  • Лозинский Владимир Иосифович
  • Кулакова Валентина Кирилловна
  • Петренко Александр Юрьевич
  • Петренко Юрий Александрович
  • Ершов Алексей Геннадиевич
  • Суханов Юрий Владимирович
RU2594427C1
НАПОЛНЕННЫЙ ЧАСТИЦАМИ СОРБЕНТА МАКРОПОРИСТЫЙ ПОЛИМЕРНЫЙ МАТЕРИАЛ, КОМПОЗИЦИЯ ДЛЯ ЕГО ПОЛУЧЕНИЯ И СПОСОБ ПОЛУЧЕНИЯ 2015
  • Лозинский Владимир Иосифович
  • Рябев Андрей Николаевич
  • Павлова Людмила Александровна
  • Цурюпа Мария Петровна
  • Блинникова Зинаида Константиновна
  • Даванков Вадим Александрович
RU2601605C1
КОМПОЗИЦИЯ В КАЧЕСТВЕ БАКТЕРИЦИДНОГО СРЕДСТВА, СПОСОБ ПОЛУЧЕНИЯ МАТЕРИАЛА НА ЕЕ ОСНОВЕ И МАКРОПОРИСТЫЙ БАКТЕРИЦИДНЫЙ МАТЕРИАЛ НА ОСНОВЕ ДАННОЙ КОМПОЗИЦИИ 2009
  • Аскадский Андрей Александрович
  • Курская Елена Анатольевна
  • Самойлова Надежда Аркадьевна
  • Ямсков Игорь Александрович
RU2404781C1
КОМПОЗИЦИЯ В КАЧЕСТВЕ БАКТЕРИЦИДНОГО И АНТИФУНГАЛЬНОГО СРЕДСТВА (ВАРИАНТЫ) И МАКРОПОРИСТЫЙ БАКТЕРИЦИДНЫЙ МАТЕРИАЛ НА ЕЕ ОСНОВЕ 2013
  • Аскадский Андрей Александрович
  • Курская Елена Анатольевна
  • Самойлова Надежда Аркадьевна
  • Ямсков Игорь Александрович
RU2522986C1
СПОСОБ ПРОИЗВОДСТВА ОДНОРОДНЫХ ПОЛИМЕРНЫХ ГРАНУЛ ВИБРАЦИОННЫМ НАГНЕТАНИЕМ СТРУИ С ПОМОЩЬЮ СУПЕРГИДРОФОБНОЙ МЕМБРАНЫ 2017
  • Косвинцев, Сергей Рудольфович
RU2736821C1
СПОСОБ КОНЦЕНТРИРОВАНИЯ ВИРУСА 1997
  • Лозинский В.И.
  • Плиева Ф.М.
  • Исаева Е.И.
  • Зубов А.Л.
RU2130069C1
ПОЛИМЕРНАЯ КОМПОЗИЦИЯ ДЛЯ ПОЛУЧЕНИЯ КРИОГЕЛЕЙ ПОЛИВИНИЛОВОГО СПИРТА И СПОСОБ ПОВЫШЕНИЯ ИХ ЖЕСТКОСТИ И ТЕПЛОСТОЙКОСТИ 2018
  • Лозинский Владимир Иосифович
  • Мичуров Дмитрий Алексеевич
  • Колосова Ольга Юрьевна
RU2678281C1
СПОСОБ ПОЛУЧЕНИЯ МАКРОПОРИСТОГО ПОЛИМЕРНОГО МАТЕРИАЛА МОНОЛИТНОГО ТИПА 2009
  • Тенникова Татьяна Борисовна
  • Влах Евгения Георгиевна
RU2401693C1
СУСПЕНЗИЯ, СОДЕРЖАЩАЯ НАНОЧАСТИЦЫ КОЛЛОИДНОГО РАСТВОРА КРЕМНИЕВОЙ КИСЛОТЫ, СТАБИЛИЗИРОВАННЫЕ ГИДРОКСОНИЕМ, СОСТАВ, ПОЛУЧЕННЫЙ ИЗ УКАЗАННОЙ РАЗБАВЛЕННОЙ СУСПЕНЗИИ, ПОРОШОК, ПОЛУЧЕННЫЙ ИЗ УКАЗАННОЙ ДЕГИДРАТИРОВАННОЙ СУСПЕНЗИИ, КОМПОЗИЦИИ, ПОЛУЧЕННЫЕ ИЗ УКАЗАННОГО ПОРОШКА, ПОЛУЧЕНИЕ И ПРИМЕНЕНИЕ 2009
  • Сюве Иво
  • Туржи Гийом
RU2488557C2

Иллюстрации к изобретению RU 2 220 987 C2

Реферат патента 2004 года ПОЛИМЕРНАЯ КОМПОЗИЦИЯ ДЛЯ ПОЛУЧЕНИЯ МАКРОПОРИСТОГО АГАРОЗНОГО ГЕЛЯ И СПОСОБ ЕГО ПОЛУЧЕНИЯ

Изобретение относится к технологии высокомолекулярных соединений, а именно к полимерным гелям и способам их получения, и может быть использовано в биотехнологии в качестве гелевой матрицы для получения хроматографических носителей. Полимерная композиция для получения макропористого агарозного геля с размером пор 10-1000 мкм содержит агарозу, воду и добавку. Используют водорастворимую добавку, выбранную из группы: мочевина, N-метилмочевина, ацетамид, гуанидингидрохлорид, гидроксид щелочного металла или аммония, роданид щелочного металла или аммония, при следующем соотношении компонентов, мас. %: агароза 1-5, указанная водорастворимая добавка 2-50, вода остальное. Способ получения вышеуказанного геля заключается в том, что ингредиенты композиции растворяют в воде, полученный раствор замораживают при температуре (-5)÷(-50)oС в течение 1-24 ч и размораживают с последующей промывкой полученного макропористого агарозного геля водой. Изобретение обеспечивает получение геля простым, технологическим, пожаробезопасным и экологически чистым способом. Способ уменьшает стадии процесса. 2 с.п.ф-лы., 1 табл.

Формула изобретения RU 2 220 987 C2

1. Полимерная композиция для получения макропористого агарозного геля с размером пор 10-1000 мкм, содержащая агарозу, воду и добавку, отличающаяся тем, что используют водорастворимую добавку, выбранную из группы: мочевина N-метилмочевина, ацетамид, гуанидингидрохлорид, гидроксид щелочного металла или аммония, роданид щелочного металла или аммония при следующем соотношении компонентов, мас.%

Агароза 1-5

Указанная водорастворимая добавка 2-50

Вода Остальное

2. Способ получения макропористого геля с размером пор 10-1000 мкм на основе композиции по п.1, отличающийся тем, что ингредиенты композиции растворяют в воде, полученный раствор замораживают при температуре –5 … - 50°С, в течение 1-24 ч и размораживают с последующей промывкой полученного макропористого агарозного геля водой.

Документы, цитированные в отчете о поиске Патент 2004 года RU2220987C2

US 4999340 А, 12.03.1991
СПОСОБ МОДИФИКАЦИИ АГАР-АГАРА 1994
  • Сорвин С.В.
  • Давыдов В.Н.
  • Щелчков А.В.
RU2111217C1
DE 4228023 A, 10.03.1994
ЕР 0355908 А, 28.02.1990
ОТСТОЙНИК 1938
  • Ярошеня И.Ф.
SU55235A1
WO 9511993 А, 24.06.1997
WO 9319115 А, 03.03.1998.

RU 2 220 987 C2

Авторы

Лозинский В.И.

Дамшкалн Л.Г.

Плиева Ф.М.

Галаев И.Ю.

Маттиассон Бу

Даты

2004-01-10Публикация

2001-12-25Подача