Изобретение относится к автоматике и измерительной технике и может быть использовано для измерения уровня жидких сред в резервуарах в теплоэнергетической, нефтяной, химической и других отраслях промышленности.
Известен способ измерения жидких сред в резервуарах, основанный на измерении величины энергии ультразвуковой волны, проходящей из одной среды в другую [Бабиков О.И. Контроль уровня с помощью ультразвука. М: Энергия, 1970 г., 80 с. (Б-ка по автоматике. Вып.459, с.18-20)].
Недостатком способа является непостоянство чувствительности по диапазону преобразования из-за логарифмической зависимости измеряемого уровня от интенсивности ультразвуковой волны, обусловленное дифракционным расхождением ультразвукового луча, зависимостью добротности электроакустических преобразователей и скорости ультразвуковой волны от параметров контролируемой среды.
Наиболее близким техническим решением к изобретению является акустоимпедансный способ измерения уровня теплоносителя в резервуаре, когда в последний помещают металлический волновод, контактирующий с жидкостью по ее высоте, возбуждают на одном конце волновода продольную упругую волну нулевого порядка, считывают отраженную от другого конца волновода упругую волну и определяют уровень интенсивности отраженной упругой волны [Мельников В.И., Усынин Г. Б. Акустические методы диагностики двухфазных теплоносителей ЯЭУ. -М.: Энергоатомиздат, 1987 г., 168 с.].
Недостатком способа является непостоянство чувствительности по диапазону преобразования из-за логарифмической зависимости уровня от интенсивности отраженной от конца волновода ультразвуковой волны.
Техническая задача - создание акустоимпедансного способа измерения уровня жидких сред, при котором обеспечивается линейная зависимость уровня от интенсивности отраженной от конца волновода ультразвуковой волны.
Технический результат - постоянство чувствительности акустоимпедансного способа измерения уровня жидких сред в диапазоне преобразования.
Для достижения технического результата размещают металлический волновод в жидкой среде по высоте резервуара, возбуждают в волноводе продольную упругую волну нулевого порядка на одном конце металлического волновода, считывают прямые и отраженные от другого конца волновода упругие волны нулевого порядка, определяют уровни интенсивности прямых и отраженных упругих волн нулевого порядка, последовательно запоминают на первом и втором элементах памяти с конденсаторами С напряжения прямого и отраженного сигналов, пропорциональные соответствующим интенсивностям прямой и отраженной упругих волн нулевого порядка, подключают к первому элементу памяти с конденсатором С резистор, сравнивают напряжения прямого и отраженного сигналов и измеряют промежуток времени от момента подключения резистора к первому элементу памяти с конденсатором С до момента равенства напряжения на резисторе R и напряжения на конденсаторе С второго элемента памяти.
Кроме того, возбуждение и считывание упругих волн нулевого порядка осуществляют в точках металлического волновода, находящихся на расстоянии, превышающем "мертвую зону" канала считывания прямой упругой волны нулевого порядка.
При распространении по металлическому волноводу продольных упругих волн нулевого порядка в последнем, кроме затухания собственно в материале металлического волновода, имеет место дополнительное затухание упругих волн нулевого порядка, вызванное излучением их поверхностью волновода в жидкую среду. Зависимость между интенсивностями прямой и отраженной волны описывается уравнением
J = J0exp(-2[αжH+αг(Hm-H)+αмHm]). (1)
Интенсивности прямой J0 и отраженной J упругих волн нулевого порядка в металлическом волноводе связаны соответственно с напряжениями U0 и U прямой и отраженной упругих волн нулевого порядка на элементе считывания квадратичной зависимостью
U0 2 = kJ0 и U2 = kJ. (2)
С учетом (2) уравнение (1) принимает вид
U = U0exp(-[αжH+αг(Hm-H)+αмHm]), (3)
где αм - коэффициент поглощения упругих волн материала волновода;
αж и αг - коэффициенты затухания продольных упругих волн нулевого порядка, вызванные излучением упругих волн нулевого порядка поверхностью волновода соответственно в жидкой и газовых средах;
Нm и Н - максимальный и текущий уровни жидкой среды;
k - коэффициент пропорциональности.
На первом и втором элементах памяти с конденсаторами С соответственно запоминают напряжения U0 и U.
При подключении к конденсатору С первого элемента памяти резистора R напряжение на последнем будет изменяться с течением времени t по закону
U* = U0exp (-t/RC). (4)
Через промежуток времени Δt напряжение U* на резисторе R сравняется с напряжением U на конденсаторе С второго элемента памяти (3)
U* = U. (5)
Тогда, с учетом (3) и (4) выходной информативный интервал времени Δt связан с уровнем H линейной зависимостью
Δt = kH + b, (6)
где k = (αж-αг)RC - чувствительность способа; (7)
b = (αг+αм)HmRC. (8)
При нормальных условиях эксплуатации
αж = const,
αг = const, (9)
αм = const
и, следовательно, чувствительность способа измерения уровня k по диапазону преобразования постоянна, чем и обеспечивается достижение технического результата.
При возбуждении упругой волны нулевого порядка из-за ненулевой длительности импульса возбуждения и переходных процессов во входной цепи канала считывания прямой упругой волны нулевого порядка возникает переходный процесс длительностью tмз (мертвая зона). Считывание сигнала в это время невозможно. Пространственное разнесение преобразователей возбуждения и считывания на расстояние, превышающее путь, проходимый упругой волной нулевого порядка за время tмз со скоростью cmin
d = tмз * cmin, (10)
позволяет, во-первых, исключить влияние переходного процесса на работу схемы и, во-вторых, сформировать идентичные каналы считывания для прямой и отраженной упругих волн, что дополнительно обеспечивает неизменность чувствительности способа измерения.
На фиг. 1 и 2 представлены структурная схема и временная диаграмма акустоимпедансного уровнемера.
Акустоимпедансный уровнемер содержит металлический волновод 1 длиной Hm, который контактирует с жидкой средой, находящейся в резервуаре 2, уровень Н которой измеряют преобразователи возбуждения 3 и считывания 4 продольных упругих волн нулевого порядка, генератор возбуждения 6, выходом подключенный к преобразователю возбуждения 3, первый и второй элементы памяти 9 и 10 с конденсаторами С, входом подключенные к преобразователю считывания 4 соответственно через ключи 7 и 8, резистор R, подключенный к первому входу компаратора 12 и через ключ 11 к конденсатору С первого элемента памяти 9. Конец волновода со стороны генератора возбуждения помещен в демпфер 5, а другой конец оставлен свободным.
Выход второго элемента памяти 10 с конденсатором С подключен ко второму входу компаратора 12, выход которого подключен к второму входу блока управления 14 и к первому входу формирователя временных интервалов 13, второй вход которого соединен с четвертым выходом блока управления 14.
Синхронизация генератора работы ключей 7, 8, 11 и блока формирования временных интервалов 13 в соответствии с алгоритмом функционирования осуществляется от блока управления 14 соответственно с первого, второго, третьего и четвертого выходов; включение уровнемера осуществляется при подаче сигнала "запуск" на первый вход блока управления 14.
Расстояние между преобразователями возбуждения 3 и считывания 4 равно d.
Акустоимпедансный уровнемер работает следующим образом.
В исходном состоянии ключи 7, 8 и 11 разомкнуты. По команде "запуск", поступающей на первый вход блока управления 14 в момент времени t1 (фиг.2) на выходе 1 блока управления 14, возникает импульс напряжения U14.1, запускающий генератор возбуждения 6; на выходе последнего формируется импульс возбуждения U6 длительностью τ.
Через промежуток времени
(t2 - t1) = d/cmin ≥ tмз (11)
на втором выходе блока управления 14 возникает импульс напряжения U14.2 длительностью
t2* - t2 ≥ d(cmах - cmin)/ (cmах • cmin) = τ, (12)
под действием которого срабатывает ключ 7 и вход первого элемента памяти 9 с конденсатором С подключается к преобразователю считывания 4.
В уравнениях (11) и (12)
cmах и cmin - максимально и минимально возможные скорости продольных упругих волн нулевого порядка в волноводе. (Скорость продольных упругих волн в волноводе зависит, например, от изменения температуры контролируемой среды).
Через время (t2*-t2) ключ 7 разомкнется. За это время конденсатор С первого элемента памяти 9 зарядится до напряжения U0, соответствующего интенсивности J0 прямой упругой волны нулевого порядка.
Через время
(t3 - t1) = 2Hm/cmin (13)
от момента запуска генератора возбуждения 6 на выходе 3 блока управления 14 возникает импульс напряжения U14.3 длительностью
t3* - t3 = 2Hm(cmax - cmin)/ (cmax • cmin) + τ, (14)
под действием которого срабатывает ключ 8 и подключает вход второго элемента памяти 10 с конденсатором С к преобразователю считывания 4.
Через время (t3*-t3) ключ 8 возвращается в исходное состояние. За это время конденсатор С второго элемента памяти 10 зарядится до напряжения U, соответствующего интенсивности J отраженной упругой волны.
Через время (t4-t1) на выходе 4 блока управления 14 возникает импульс напряжения U14.4, под действием которого срабатывает ключ 11 и подключает резистор R к конденсатору С первого элемента памяти 9, который разряжается согласно уравнению (4). Одновременно с этим импульсом с входа 4 блока управления 14 запускается формирователь временных интервалов 13.
Когда напряжение U* на резисторе R сравняется с напряжением U, на выходе второго элемента памяти 10 с конденсатором С, компаратор 12 срабатывает и на выходе формирователя временных интервалов 13 будет сформирован импульс длительностью (6)
t5 - t4 = Δt = kH + b.
Одновременно с этим с выхода компаратора 12 на первый вход блока управления 14 поступает сигнал, возвращающий схему в исходное состояние.
Через интервал времени
T ≥ Hm/cmin + tмз + Δtmax (15)
цикл работы уровнемера повторяется.
Здесь
Δtmax = kHm + b (16)
- промежуток времени, в течение которого происходит разрядка напряжения на конденсаторе С первого элемента памяти 9 при максимальном Hm уровне жидкости.
Источники информации
1. Бабиков О.И. Контроль уровня с помощью ультразвука. М.: Энергия, 1970 г., 80 с. (Б-ка по автоматике. Вып. 459, с. 18-20).
2. Мельников В. И. , Усынин Г.Б. Акустические методы диагностики двухфазных теплоносителей ЯЭУ. - М.: Энергоатомиздат, 1987 г., 168 с.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ИЗМЕРЕНИЯ УРОВНЯ ЖИДКИХ СРЕД В РЕЗЕРВУАРАХ | 1996 |
|
RU2138786C1 |
УЛЬТРАЗВУКОВОЙ СПОСОБ ИЗМЕРЕНИЯ ТОЛЩИНЫ ИЗДЕЛИЯ | 2009 |
|
RU2442106C2 |
СПОСОБ ПРЕОБРАЗОВАНИЯ ПЕРЕМЕЩЕНИЙ ВО ВРЕМЕННОЙ ИНТЕРВАЛ | 2000 |
|
RU2227896C2 |
Способ и устройство для возбуждения акустических колебаний в компактных, дискретных, влагонасыщенных и жидких средах | 2018 |
|
RU2690077C1 |
СПОСОБ ВОЗБУЖДЕНИЯ И ПРИЕМА СИММЕТРИЧНЫХ И АНТИСИММЕТРИЧНЫХ ВОЛН В ТОНКИХ ВОЛНОВОДАХ | 2013 |
|
RU2525473C1 |
БИОДАТЧИК, СОДЕРЖАЩИЙ ВОЛНОВОД | 2014 |
|
RU2687847C1 |
АНТЕННА ВЫТЕКАЮЩЕЙ ВОЛНЫ | 2013 |
|
RU2553059C1 |
УЛЬТРАЗВУКОВОЙ ГЕНЕРАТОР | 2007 |
|
RU2343011C1 |
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ДАВЛЕНИЯ | 2015 |
|
RU2586388C1 |
МИКРОПРОЦЕССОРНЫЙ МАГНИТОСТРИКЦИОННЫЙ ПРЕОБРАЗОВАТЕЛЬ ПОЛОЖЕНИЯ В КОД | 1999 |
|
RU2175754C2 |
Изобретение относится к автоматике и измерительной технике и может быть использовано для измерения уровня жидких сред в резервуарах в теплоэнергетической, нефтяной, химической и других отраслях промышленности. Способ включает размещение металлического волновода в жидкой среде по высоте резервуара, возбуждение в волноводе продольной упругой волны нулевого порядка на одном конце металлического волновода, считывание прямой и отраженной от другого конца волновода упругих волн нулевого порядка, определение уровней интенсивностей прямой и отраженной упругих волн нулевого порядка. При этом последовательно запоминают на первом и втором элементах памяти с конденсаторами С напряжения прямого и отраженного сигналов, соответствующие интенсивностям прямой и отраженной упругих волн нулевого порядка. Подключают к первому элементу памяти с конденсатором С резистор. Сравнивают напряжения прямого и отраженного сигналов. Измеряют промежуток времени от момента подключения резистора к первому элементу памяти с конденсатором С до момента равенства напряжения на резисторе R и напряжения на конденсаторе второго элемента памяти. Технический результат состоит в обеспечении постоянства чувствительности акустоимпедансного способа измерения уровня жидких сред в диапазоне преобразования. 1 з.п. ф-лы, 2 ил.
МЕЛЬНИКОВ В.И., УСЫНИН Г.Б | |||
Акустические методы диагностики двухфазных теплоносителей ЯЭУ | |||
- М.: Энергоатомиздат, 1987, с.168 | |||
УЛЬТРАЗВУКОВОЙ УРОВНЕМЕР | 1993 |
|
RU2064666C1 |
RU 94030294 А1, 20.06.1996 | |||
US 4765186 А, 23.08.1988 | |||
Способ термического упрочнения | 1988 |
|
SU1573033A1 |
Авторы
Даты
2004-01-20—Публикация
2002-05-30—Подача