Изобретение относится к гидромашиностроению, авиационно-космической технике и может быть использовано для экспериментального определения КПД насосов, как в стендовых условиях, так и в системах диагностики силовых и энергетических установок различного назначения.
Известен классический способ экспериментального определения КПД насоса по “ГОСТу 6134-87. Насосы динамические. Методы испытаний”, в котором с помощью измерителей крутящего момента ведут измерение скорости вращения и величины крутящего момента на валу насоса.
Основным недостатком данного способа является сложность в использовании и дороговизна измерителей крутящего момента.
Известен “Способ диагностики объемных гидромашин”, патент РФ № 2027907 от 29.08.91 г., в котором измеряют перепад давления в линиях высокого и низкого давления гидромашины, измеряют разность температур рабочей жидкости между потоком утечек и потоком в линии низкого давления, определяют величину расхода в одном из потоков, который объединяют с потоком утечек и контролируют температуру рабочей жидкости. Для определения общего и объемного КПД гидромашины определяют величину расхода утечек, вычисляемую из условия теплового баланса потока, поступающего к гидромашине, и потока, поступающего на слив после объединения с потоком утечек.
Основным техническим недостатком данного способа является необходимость применения дополнительного насоса для восполнения расхода рабочей жидкости гидромашины, конструктивная сложность организации отбора расхода утечек рабочей жидкости в условиях эксплуатации гидравлических машин, низкая точность косвенного определения величины расхода избыточного расхода рабочей жидкости дополнительного насоса и величины расхода рабочей жидкости гидромашины на основе использования уравнений теплового баланса смешиваемых потоков рабочей жидкости.
Наиболее близким техническим решением заявляемому способу является “Способ диагностирования технического состояния насоса”, авторское свидетельство № 1513196 от 17.10.86 г., при котором измеряют перепад давлений на насосе, температуру жидкости на входе в насос, производят прокачивание фиксированного объема жидкости через байпасную магистраль с регулируемым дросселем, устанавливают одинаковыми перепад давления и количество циклов прокачивания. В качестве диагностического параметра принимают прирост температуры на входе в насос после заданного числа циклов прокачивания.
Основным техническим недостатком данного способа является то, что диагностирование насоса ведется без учета теплоотвода в окружающую среду, что снижает точность диагностирования, при этом параметр диагностирования, прирост температуры, не отражает напрямую главную энергетическую характеристику насоса - его КПД.
Задачей предлагаемого технического решения является повышение точности определения КПД насоса с возможностью проведения испытаний непосредственно в процессе его эксплуатации без демонтажа с объекта и упрощение системы измерения испытательных стендов.
Технологический результат определения КПД насоса основан на использовании принципа сохранения энергии и заключаются в том, что затрачиваемая на привод насоса энергия полностью переходит в тепловую энергию потока, циркулирующего по замкнутому, теплоизолированному от внешней среды, гидравлическому контуру.
Для решения данной технической задачи в способе определения КПД насоса в состав замкнутого гидравлического контура вводят теплообменник, прокачивают с помощью исследуемого насоса фиксированный объем рабочего тела через теплоизолированный замкнутый гидравлический контур с регулируемым дросселем и расширительным бачком. В каждом испытании измеряют перепад давления на насосе и температуру рабочего тела на входе в насос в течение фиксированного промежутка времени, измеряют температуру подогрева охладителя и расход охладителя, пропускаемого через теплообменник, также в каждом испытании измеряют частоту вращения вала исследуемого насоса. При этом КПД исследуемого насоса вычисляют с учетом предварительного определения значения гидравлического сопротивления замкнутого гидравлического контура.
На чертеже изображена схема замкнутого гидравлического контура с исследуемым насосом, реализующего предлагаемый способ определения КПД насоса.
Замкнутый гидравлический контур 1 содержит исследуемый насос 2, входной патрубок 3, выходной патрубок 4, регулируемый дроссель 5, теплообменник 6 с входным краном 7 и выходным краном 8 и расширительный бачок 9. На входном патрубке 3 насоса 2 установлен датчик 10 температуры (T1) рабочего тела и штуцер 11 для (p1) отбора давления рабочего тела на входе в насос 2. На выходном патрубке 4 насоса 2 установлен штуцер 12 для отбора давления (р2) рабочего тела на выходе из насоса 2. К штуцерам 11 и 12 подключен датчик 13 для измерения перепада полного давления (Δр*) на насосе 2. Замкнутый гидравлический контур 1 имеет краны 14 и 15. Кран 14 служит для заполнения замкнутого гидравлического контура 1 фиксированным объемом рабочего тела перед испытанием исследуемого насоса 2, а кран 15 - для слива рабочего тела из замкнутого гидравлического контура 1 после испытания насоса 2. На валу насоса 2 установлен датчик 16 частоты вращения (n) вала насоса 2. Перед выходным краном 8 в магистрали 17 подвода охладителя к теплообменнику 6 установлен расходомер 18 для измерения расхода охладителя (mx) через теплообменник 6. На магистрали 17, перед теплообменником 6, имеются входной патрубок 19 и выходной патрубок 20 для установки чувствительных элементов, для измерения температуры охладителя соответственно - (T1x и T2x), дифференциального датчика 21, измеряющего подогрев охладителя (ΔТх) в теплообменнике 6. Выходные электрические сигналы датчиков 10, 13, 16, и 21 поступают на командно-вычислительное устройство 22. На вход командно-вычислительного устройства 22 подключены задатчик 23 температуры (Т) на входе в насос 2 и датчик 16 частоты вращения (n) вала насоса 2. Все элементы замкнутого гидравлического контура 1 покрывают теплоизоляционным материалом 24 для предотвращения тепловых потерь в окружающую среду при работе насоса 2 во время проведения испытаний.
Способ определения КПД насоса осуществляется следующим образом.
Путем предварительной автономной проливки замкнутого гидравлического контура 1 рабочим телом от штуцера 12 на выходе из насоса 2 до штуцера 11 на входе в насос 2 определяют коэффициент гидравлического сопротивления (ξ) замкнутого гидравлического контура 1 во всем диапазоне измерения регулирующего органа - дросселя 5. По результатам проливки вычисляют техническую характеристику (П) замкнутого гидравлического контура 1 по формуле:
где F2 - площадь сечения выходного патрубка исследуемого насоса, м2;
ρ - плотность прокачиваемого через исследуемый насос рабочего тела, кг/ м3;
ξ - коэффициент гидравлического сопротивления замкнутого гидравлического контура (безразмерная величина).
Найденные значения ξ и П заносят в “Паспорт” замкнутого гидравлического контура.
Определив техническую характеристику (П) замкнутого гидравлического контура, последний подсоединяют к исследуемому насосу 2. Входящие в состав замкнутого гидравлического контура 1 исследуемый насос 2, регулируемый дроссель 5, теплообменник 6, расширительный бачок 9 и соединяющие их трубопроводы покрывают теплоизоляционным материалом 24.
После проведения подготовительных операций включают привод (на схеме не показан) исследуемого насоса 2. При этом с задатчика 23 температуры (Т) и датчика 16 частоты вращения (n) вала насоса 2 на вход командно-вычислительного устройства 22 подаются сигналы, соответствующие параметрам, заданным температуре рабочего тела (T1) на входе в насос 2 и частоты вращения (n) вала насоса 2, при которых требуется определить значение КПД исследуемого насоса 2.
В процессе проведения испытаний командно-вычислительное устройство 22 работает в режиме непрерывной регистрации выходных сигналов: датчика 10 температуры (T1) рабочего тела на входе в насос 2, датчика 13 измерения перепада полного давления (Δр*) рабочего тела на насосе 2, датчика 16 частоты вращения (n) вала насоса 2, расходомера 18, для измерения расхода охладителя (mx) через теплообменник 6 дифференциального датчика 21, для измерения температуры подогрева охладителя (Тх) в теплообменнике 6 через чувствительные элементы 19 и 20 (T1x и Т2х), и по результатам их обработки, в темпе проведения испытаний, командно-вычислительное устройство 22 выдает команду на соответствующее изменение расхода 2 охладителя (mx) через теплообменник 6.
При достижении стационарного режима работы исследуемого насоса 2 при заданных значениях температуры (Т) рабочего тела на входе в насос испытания заканчивают и на экран монитора командно-вычислительного устройства 22 выводится искомое значение КПД, исследованного насоса, вычисляемое по формуле:
где П - техническая характеристика замкнутого гидравлического контура, м3,5 кг0,5;
Δр* - перепад полного давления на насосе, Па;
Ср - теплоемкость охладителя, Дж/кг•сек;
ΔТх- температура подогрева охладителя, град;
mx - расход охладителя, кг/сек,
при этом Δр*=р2-p1, Па;
ΔТx-ΔТ2x-ΔT1x, град,
где p1 - давление рабочего тела на входе в насос, Па;
р2 - давление рабочего тела на выходе из насоса, Па;
T1x - температура охладителя на входе в теплообменник, град;
Т2х - температура охладителя на выходе из теплообменника, град.
Если измеренное в данном испытании значение КПД исследуемого насоса окажется ниже допустимого значения при зафиксированной в ходе испытания частоте вращения вала насоса, то это свидетельствует о необходимости прекращения эксплуатации насоса.
Предлагаемый способ определения КПД насоса основан на использовании принципа сохранения энергии, заключающийся в том, что затрачиваемая на привод насоса энергия полностью переходит в тепловую энергию потока, циркулирующего по замкнутому, теплоизолированному от внешней среды, гидравлическому контуру. При этом, если не применять теплообменник, то будет возрастать температура рабочего тела в гидравлическом контуре, и, в частности, будет возрастать температура рабочего тела на входе в насос, вплоть до возникновения кавитационного срыва работы насоса.
В случаях, когда в качестве охладителя можно использовать рабочее тело исследуемого насоса, например, при испытаниях насоса на воде, то в схеме, реализующей предлагаемый способ определения КПД насоса, целесообразно применять массотеплообменник. Конструктивно массотеплообменник выполнен проще, а коэффициент регенерации тепла у него выше, чем у теплообменника. При этом определение технических параметров для расчета КПД исследуемого насоса с использованием теплообменника в составе замкнутого гидравлического контура соответствует определению технических параметров и расчету КПД исследуемого насоса с использованием массотеплообменника в составе замкнутого гидравлического контура. Наличие теплообменника или массотеплообменника обеспечивает регулирование температуры рабочего тела в замкнутом гидравлическом контуре, саморазогрев которого происходит за счет механической энергии, приводимой к валу насоса.
Предлагаемый способ экспериментального определения КПД насоса может быть успешно использован как в стендовых условиях, благодаря чему существенно упрощаются системы измерения испытательных стендов, поскольку исключается необходимость использования сложных дорогостоящих измерителей крутящего момента на валу привода насоса, так и системах диагностики силовых и энергетических установок различного назначения, что дает возможность производить диагностику насосов непосредственно в процессе их эксплуатации без демонтажа с объекта.
название | год | авторы | номер документа |
---|---|---|---|
Способ определения коэффициента полезного действия (КПД) насоса | 2002 |
|
RU2223416C2 |
СПОСОБ ДИАГНОСТИКИ ОБЪЕМНЫХ ГИДРОМАШИН | 1991 |
|
RU2027907C1 |
СПОСОБ ИСПЫТАНИЙ МАЛОРАЗМЕРНЫХ ЛОПАТОЧНЫХ ТУРБОМАШИН И ИСПЫТАТЕЛЬНЫЙ СТЕНД ДЛЯ ЕГО РЕАЛИЗАЦИИ | 2016 |
|
RU2634341C2 |
Установка для исследования углеводородного ракетного топлива | 2018 |
|
RU2664443C1 |
УСТРОЙСТВО ДЛЯ РЕГЕНЕРАТИВНОГО ОХЛАЖДЕНИЯ СВЕРХЗВУКОВОЙ ЧАСТИ СОПЛА ЖИДКОСТНОГО РАКЕТНОГО ДВИГАТЕЛЯ | 2012 |
|
RU2514570C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ КАВИТАЦИОННЫХ ХАРАКТЕРИСТИК НАСОСОВ И СТЕНД ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2003 |
|
RU2244855C1 |
КОСМИЧЕСКАЯ ЭНЕРГЕТИЧЕСКАЯ УСТАНОВКА С МАШИННЫМ ПРЕОБРАЗОВАНИЕМ ЭНЕРГИИ | 2014 |
|
RU2583191C1 |
ДВУХКОНТУРНЫЙ ТУРБОРЕАКТИВНЫЙ ДВИГАТЕЛЬ | 1991 |
|
RU2033550C1 |
СПОСОБ РЕКУПЕРАЦИИ ЭНЕРГИИ И ГИДРОПНЕВМОСИСТЕМА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2008 |
|
RU2384759C1 |
Экспериментальная установка для изучения теплообменных аппаратов | 2015 |
|
RU2619037C2 |
Изобретение относится к гидромашиностроению и авиационно-космической технике. Способ определения КПД насоса заключается в том, что в состав замкнутого гидравлического контура вводят теплообменник и прокачивают с помощью исследуемого насоса фиксированный объем рабочего тела через теплоизолированный замкнутый гидравлический контур с регулируемым дросселем и расширительным бачком. В каждом испытании измеряют перепад давления на насосе и температуру рабочего тела на входе в насос в течение фиксированного промежутка времени, измеряют температуру подогрева охладителя и расход охладителя, пропускаемого через теплообменник, и измеряют частоту вращения вала исследуемого насоса. КПД исследуемого насоса вычисляют с учетом предварительного определения значения гидравлического сопротивления замкнутого гидравлического контура по расчетным формулам. Изобретение направлено на повышение точности определения КПД насоса непосредственно в процессе его эксплуатации без демонтажа с объекта и упрощение системы измерения испытательных стендов. 1 ил.
Способ определения коэффициента полезного действия (КПД) насоса, заключающийся в том, что по замкнутому гидравлическому контуру с помощью исследуемого насоса прокачивают фиксированное количество рабочего тела, измеряют перепад давления на насосе и температуру рабочего тела на входе в насос, отличающийся тем, что в состав замкнутого гидравлического контура вводят теплообменник и весь контур теплоизолируют, определяют гидравлическое сопротивление замкнутого гидравлического контура, измеряют температуру подогрева охладителя и расход охладителя, пропускаемого через теплообменник, измеряют частоту вращения вала насоса, а КПД исследуемого насоса определяют по формуле
где П - техническая характеристика замкнутого гидравлического
контура, м3,5 кг-0,5;
Δр* - перепад полного давления на насосе, Па;
Δр*=р2-р1, Па;
p1 - давление рабочего тела на входе в насос, Па;
р2 - давление рабочего тела на выходе из насоса, Па;
Ср - теплоемкость охладителя, Дж/кг•с;
ΔТx - температура подогрева охладителя, град,
ΔТx-ΔТ2х-ΔТ1x, град;
T1x - температура охладителя на входе в теплообменник, град;
T2x - температура охладителя на выходе из теплообменника, град;
mx - расход охладителя, кг/с,
при этом П определяют по формуле
где F2 - площадь сечения выходного патрубка исследуемого насоса, м2;
ρ - плотность прокачиваемого через исследуемый насос рабочего тела, кг/ м3;
ξ - коэффициент гидравлического сопротивления замкнутого гидравлического контура.
Способ диагностирования технического состояния насоса | 1986 |
|
SU1513196A1 |
Авторы
Даты
2004-03-10—Публикация
2002-06-20—Подача