Изобретение относится к области электролитического осаждения твердых, износостойких покрытий, в частности железо-кобальтовых покрытий, применяемых для восстановления и упрочнения поверхностей деталей. Известен способ электролитического осаждения сплава из электролита, содержащего хлористое железо 100-150 г/л, хлористый кобальт 50-70 г/л, хлористый марганец 100-200 г/л. Процесс ведется при плотности тока 20-50 А/дм2, температуре электролита 30-80°С, при рН 0,8-1,6 (А.с. №264097, МПК С 23 В 5/32, Способ электролитического осаждения сплавов железа. Авт. А.Г.Виницкий, В.А.Пуда, В.И.Ковтун и Л.М.Мясковский).
Недостатком данного способа является ведение процесса при высокой температуре электролита, получаемые покрытия обладают низкой прочностью сцепления с основой, низкой микротвердостью и износостойкостью.
За прототип взят известный способ электролитического осаждения сплава железо-кобальт из электролита, содержащего хлористое железо 100-200 г/л, кобальт хлористый 10-60 г/л, полиамидную смолу 8-20 г/л. Процесс осаждения покрытия осуществляют при катодной плотности тока 10-40 А/дм2, температуре электролита 50-80°С и рН 1,1-1,8 (А.с. №382764 МПК С 23 в 5/32. Электролит для для электролитического осаждения сплава железо-кобальт. Авт. А.Г.Терхунов, В.М.Тиунов и С.А.Матиенко).
Недостатком данного способа является недостаточная микротвердость, износостойкость и низкая прочность сцепления покрытия с основой.
Для повышения микротвердости, износостойкости получаемых покрытий и повышения прочности сцепления покрытия с основным металлом предлагается способ электролитического осаждения сплава железо-кобальт из электролита, содержащего, г/л:
Хлористое железо 350-400
Кобальт хлористый 5-50
Соляная кислота 0,5-2,0
Процесс осаждения ведут на переменном асимметричном токе, начиная с коэффициента асимметрии 1,2 и повышая до 6, катодной плотности тока 30-60 А/дм, температуре электролита 30-50°С.
Данный электролит получают соединением водных растворов хлористого железа и хлористого кобальта. Для поддержания кислотности добавляется соляная кислота.
Концентрация хлористого железа находится в пределах 350-400 г/л. Нижний предел показывает зону минимальной вязкости. Верхний предел показывает зону максимальной электропроводности. (Швецов А.Н. Основы восстановления деталей осталиванием. Омск, 1973, с.77-79).
Содержание соляной кислоты находится в пределах 0,5-2,0 г/л. Верхний предел установлен из экономических соображений, электроосаждение железа на катоде происходит с одновременным разряжением водорода. С повышением содержания соляной кислоты резко увеличивается количество разряжающегося водорода и падает выход по току. Нижний предел выбран по качественным характеристикам структур электролитического железа. При содержании соляной кислоты меньше 0,5 г/л происходит сильное защелачивание прикатодного слоя. Гидроокись, образующаяся в прикатодном слое, включается в покрытия и этим ухудшает их структуру.
Содержание кобальта хлористого находится в интервале 5-50 г/л. Ниже 5 г/л применение хлористого кобальта нецелесообразно, т.к. получаемое покрытие по твердости близко к покрытию твердым железом. Выше концентрации 50 г/л применение хлористого кобальта приводит к изменению физико-механических свойств покрытия, резко увеличивается хрупкость, что отрицательно сказывается на износостойкости покрытия.
Переменный асимметричный ток дает возможность вести процесс при пониженной температуре 30-50°С. Нижний предел ограничен диффузионными свойствами электролита. Движение ионов замедленное и скорость осаждения низкая. Выше 50°С использовать осаждение покрытий невыгодно, т.к. получаемые покрытия имеют низкую микротвердость.
Катодная плотность тока находится в пределах 30-60 А/дм2. Ниже 30 А/дм2 плотность тока использовать не целесообразно, т.к. процесс электролиза имеет низкую скорость осаждения покрытия. При катодной плотности тока больше 60 А/дм2 происходит интенсивное дендритообразование и резко снижается выход по току.
Процесс осаждения покрытия происходит на переменном асимметричном токе с коэффициентом асимметрии 1,2-6. Начало осаждения проходит 2-3 минуты при коэффициенте асимметрии β=1,2-1,5. При этом образуется покрытие пониженной твердости, которое имеет высокую сцепляемость с основой Gсц=350 МПа. Потом происходит постепенное уменьшение анодной составляющей до коэффициента асимметрии β=6, который характеризуется стабильной скоростью осаждения и высокой микротвердостью покрытия. Дальнейшее повышение β не рекомендуется, т.к. процесс не отличается от осаждения на постоянном токе.
На основе проведенных испытаний оптимальными условиями способа являются условия, приведенные в качестве примера:
Электролит состоит из следующих компонентов в количестве, г/л:
Хлористое железо 350
Кобальт хлористый 40
Соляная кислота 1,5
Процесс электролитического покрытия ведут при температуре 40°С и катодной плотности тока 50 А/дм2. Анодом служит малоуглеродистая сталь. Предварительно деталь подвергается обезжириванию венской известью и анодной обработке в растворе 30% серной кислоты. Процесс осаждения начинается при коэффициенте асимметрии 1,2, который повышают до 6. В дальнейшем осаждение идет при коэффициенте асимметрии 6. Покрытие имеет сцепляемость Gсц=350 МПа, микротвердость 8500 МПа. Состав покрытия: железо 88%, кобальт 12%. Скорость осаждения равна 0,4 мм/ч.
Предлагаемый способ имеет высокую производительность за счет применения переменного асимметричного тока. Он экономически эффективен, т.к. осаждение покрытия происходит при высокой катодной плотности тока и имеет высокую скорость осаждения покрытия. Покрытия, полученные предлагаемым способом, обладают высокой микротвердостью и износостойкостью, что позволяет их использовать в народном хозяйстве для восстановления и упрочнения поверхностей деталей машин.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ЭЛЕКТРОЛИТИЧЕСКОГО ОСАЖДЕНИЯ СПЛАВА ЖЕЛЕЗО-ВАНАДИЙ | 2002 |
|
RU2231578C1 |
СПОСОБ ЭЛЕКТРОЛИТИЧЕСКОГО ОСАЖДЕНИЯ СПЛАВА ЖЕЛЕЗО-ВАНАДИЙ-КОБАЛЬТ | 2009 |
|
RU2401328C1 |
СПОСОБ ЭЛЕКТРОЛИТИЧЕСКОГО ОСАЖДЕНИЯ СПЛАВА ЖЕЛЕЗО-ТИТАН-КОБАЛЬТ | 2009 |
|
RU2410473C1 |
СПОСОБ ЭЛЕКТРОЛИТИЧЕСКОГО ОСАЖДЕНИЯ СПЛАВА ЖЕЛЕЗО-ТИТАН | 2003 |
|
RU2230139C1 |
СПОСОБ ЭЛЕКТРОЛИТИЧЕСКОГО ОСАЖДЕНИЯ СПЛАВА ЖЕЛЕЗО-ФОСФОР | 1999 |
|
RU2164560C1 |
СПОСОБ ЭЛЕКТРОЛИТИЧЕСКОГО ОСАЖДЕНИЯ СПЛАВА ЖЕЛЕЗО - АЛЮМИНИЙ | 2003 |
|
RU2263727C2 |
Способ электролитического осаждения сплава железо-кобальт | 2015 |
|
RU2634555C2 |
СПОСОБ ЭЛЕКТРОЛИТИЧЕСКОГО ОСАЖДЕНИЯ СПЛАВА ЖЕЛЕЗО - МОЛИБДЕН | 2000 |
|
RU2174163C1 |
СПОСОБ ЭЛЕКТРОЛИТИЧЕСКОГО ОСАЖДЕНИЯ СПЛАВА ЖЕЛЕЗО-ВОЛЬФРАМ | 2001 |
|
RU2192509C2 |
СПОСОБ ЭЛЕКТРОЛИТИЧЕСКОГО ОСАЖДЕНИЯ ПОКРЫТИЯ ЖЕЛЕЗО-ДИСУЛЬФИД МОЛИБДЕНА | 2013 |
|
RU2537686C1 |
Изобретение относится к области электролитического осаждения твердых износостойких покрытий, в частности железо-кобальтовых покрытий, применяемых для восстановления и упрочнения поверхностей деталей. Способ включает осаждение железо-кобальтового покрытия из электролита, содержащего, г/л: хлористое железо 350-400, кобальт хлористый 5-50, соляную кислоту 0,5-2, на переменном асимметричном токе с коэфициентом асимметрии 1,2-6 при температуре электролита 30-50°С, интервале катодных плотностей тока 30-60 А/дм2. Технический результат: повышение микротвердости, износостойкости и прочности сцепления с основой.
Способ электролитического осаждения сплава железо-кобальт из электролита, содержащего хлористое железо, кобальт хлористый, соляную кислоту, отличающийся тем, что осаждение ведут из электролита при следующем соотношении компонентов, г/л:
Хлористое железо 350-400
Кобальт хлористый 5-50
Соляная кислота 0,5-2
на переменном асимметричном токе с коэффициентом асимметрии тока 1,2-6 при температуре электролита 30-50°С, интервале катодных плотностей тока 30-60 А/дм2.
ЗЮЗНАЯ | 0 |
|
SU382764A1 |
US 5810992, 22.09.1998 | |||
US 4430171, 07.02.1984. |
Авторы
Даты
2004-06-20—Публикация
2002-11-12—Подача