СПОСОБ ЭЛЕКТРОЛИТИЧЕСКОГО ОСАЖДЕНИЯ СПЛАВА ЖЕЛЕЗО - АЛЮМИНИЙ Российский патент 2005 года по МПК C25D3/56 

Описание патента на изобретение RU2263727C2

Изобретение относится к области электролитического осаждения твердых, износостойких покрытий, в частности железоалюминиевых покрытий, применяемых для восстановления и упрочнения поверхностей деталей.

Известен способ электролитического осаждения из хлористого электролита железнения, содержащего 200-250 кг/м3 хлористого железа и 2-3 кг/м3 соляной кислоты (Мелков М.П. Твердое осталивание автотракторных деталей. М., "Транспорт", 1971, с. 19-20). Однако этот электролит работает при высокой температуре (60-80°С) и обеспечивает получение покрытий со значением микротвердости 4500-6500 МПа.

За прототип взят известный способ электролитического осаждения сплава железо-алюминий из электролита, содержащего: хлористый алюминий, железо хлористое, хлористый калий (натрий), соляную кислоту, глицерин. Процесс ведут на постоянном токе при температуре 20-100°С и катодной плотности тока 5-100 А/дм2 (А.с. №377432, МПК С 23 b 5/32. Способ электролитического осаждения сплава железо-алюминий). Недостатком данного способа является ограниченная микротвердость покрытия, низкая прочность сцепления покрытия с основой, низкая скорость осаждения покрытия и использование высоких температур электролита, низкая износостойкость.

Для устранения вышеперечисленных недостатков предлагается способ электролитического осаждения сплава железо-алюминий, который имеет высокую производительность за счет применения переменного асимметричного тока. Он экономически эффективен, т.к. осаждение происходит при высоких катодных плотностях тока и низких температурах электролита, что обеспечивает высокую скорость осаждения покрытий. Получаемые покрытия обладают высокой прочностью сцепления с основой, высокой микротвердостью и износостойкостью. Осаждение происходит из электролита, содержащего хлористый алюминий, железо хлористое (II), хлористый калий (натрий), соляную кислоту при следующем соотношении компонентов, кг/м3:

хлористый алюминий50-600железо хлористое (II)200-700хлористый калий (натрий)80-100соляная кислота0,5-1,5

Электролиз ведется при температуре 20-40°С на переменном асимметричном токе с интервалом катодных плотностей тока 30-70 А/дм2 и коэффициентом асимметрии β=1,2-6. Кислотность электролита находится в пределах рН 0,8.

Электролит получают соединением водного раствора хлористого железа, хлористого алюминия и хлористого калия (натрия).

Хлористый алюминий находится в пределах 50-600 кг/м3. Нижний предел обусловлен тем, что при содержании менее 50 кг/м3 хлористого алюминия, не происходит заметного изменения физико-механических свойств покрытия. Верхний предел ограничивается содержанием хлористого алюминия 600 кг/м3. При содержании больше 600 кг/м3 происходит интенсивное образование окислов алюминия, что резко снижает физико-механические свойства электролитического покрытия.

Концентрация хлористого железа находится в пределах 300-450 кг/м3. Нижний предел показывает зону минимальной вязкости. Верхний предел показывает зону максимальной электропроводности (Швецов А.Н. Основы восстановления деталей осталиванием. Омск, 1973, с.77-79).

Содержание соляной кислоты находится в пределах 0,5-1,5 кг/м3. Верхний предел установлен из экономических соображений, электроосаждение железа на катоде происходит с одновременным разряжением водорода. С повышением содержания соляной кислоты резко увеличивается количество разряжающегося водорода и падает выход по току. Нижний предел выбран по качественным характеристикам структур электролитического железа. При содержании соляной кислоты меньше 0,5 кг/м3 происходит сильное защелачивание прикатодного слоя. Гидроокись, образующаяся в прикатодном слое, включается в покрытие и этим ухудшает их структуру.

Хлористый калий (натрий) находится в пределах 80-100 кг/м3. Нижний предел обусловлен тем, что при содержании менее 80 кг/м3 хлористого калия (натрия), не происходит заметного изменения физико-механических свойств покрытия. Верхний предел ограничивается содержанием хлористого калия (натрия) 100 кг/м3. При содержании больше 100 кг/м3 происходит интенсивное образование окислов калия (натрия), что резко снижает физико-механические свойства электролитического покрытия.

Температурный интервал находится в пределах 20-40°С. Нижний предел ограничен диффузионными свойствами электролита. Движение ионов замедленное и скорость осаждения покрытия низкая. Выше 40°С использование электролита невыгодно с экономической точки зрения. Качественного изменения покрытия не происходит, однако увеличиваются затраты на подогрев электролита.

Катодная плотность тока находится в пределах 40-80 А/дм2. Ниже 40 А/дм2 плотность тока использовать не целесообразно, т.к. процесс электролиза имеет низкую скорость осаждения покрытия. При катодной плотности тока выше 80 А/дм2 происходит сильное дендритообразование и резко снижается выход по току.

Начало осаждения покрытия проходит при коэффициенте асимметрии β=1,2, который обеспечивает высокую сцепляемость покрытия с основой, Gсц=350 МПа. Если коэффициент асимметрии ниже 1,2, осаждение не происходит. В процессе электроосаждения коэффициент асимметрии постепенно повышают до β=6, который характеризуется высокой и стабильной скоростью осаждения покрытия. Дальнейшее повышение коэффициента асимметрии не рекомендуется, т.к. с дальнейшим снижением анодной составляющей процесс переходит на режим, близкий к постоянному току, и качество покрытий ухудшается. Благодаря разным значениям коэффициента асимметрии можно получать покрытия с различными физико-механическими свойствами.

На основе проведенных испытаний оптимальными условиями способа электроосаждения сплава железо-алюминий являются условия, приведенные в примере:

Электролит состоит из следующих компонентов в количестве, кг/м3:

хлористый алюминий350железо хлористое (II)350хлористый калий (натрий)90соляная кислота1,0

Процесс электролитического осаждения покрытия ведут при температуре 40°С и катодной плотности тока 40 А/дм2. Процесс осаждения начинают с β=1,2 и постепенно в течение 3-5 минут повышают до β=6. Покрытие имеет Gсц=350 МПа, микротвердость Нμ=8000 МПа, скорость осаждения 0,35 мм/ч.

Предлагаемый способ имеет высокую производительность за счет применения переменного асимметричного тока. Он экономически эффективен, т.к. осаждение покрытия происходит при высокой катодной плотности тока и имеет высокую скорость осаждения покрытия. Покрытия, полученные предлагаемым способом, обладают высокой микротвердостью и износостойкостью, что позволяет их использовать в народном хозяйстве для восстановления и упрочнения поверхностей деталей машин.

Похожие патенты RU2263727C2

название год авторы номер документа
СПОСОБ ЭЛЕКТРОЛИТИЧЕСКОГО ОСАЖДЕНИЯ СПЛАВА ЖЕЛЕЗО-АЛЮМИНИЙ 2012
  • Серебровский Владимир Исаевич
  • Серебровская Людмила Николаевна
  • Серебровский Вадим Владимирович
  • Коняев Николай Васильевич
  • Жданов Сергей Иванович
RU2486294C1
СПОСОБ ЭЛЕКТРОЛИТИЧЕСКОГО ОСАЖДЕНИЯ СПЛАВА ЖЕЛЕЗО-БОР 2003
  • Серебровский В.И.
  • Серебровская Л.Н.
  • Серебровский В.В.
  • Сафронов Р.И.
  • Коняев Н.В.
RU2250936C1
СПОСОБ ЭЛЕКТРОЛИТИЧЕСКОГО ОСАЖДЕНИЯ СПЛАВА ЖЕЛЕЗО-ТИТАН 2003
  • Серебровский В.И.
  • Серебровская Л.Н.
  • Серебровский В.В.
  • Коняев Н.В.
RU2230139C1
СПОСОБ ЭЛЕКТРОЛИТИЧЕСКОГО ОСАЖДЕНИЯ ПОКРЫТИЯ ЖЕЛЕЗО-ДИСУЛЬФИД МОЛИБДЕНА 2013
  • Афанасьев Евгений Андреевич
  • Серебровский Вадим Владимирович
  • Серебровский Владимир Исаевич
  • Степашов Роман Владимирович
RU2537686C1
СПОСОБ ЭЛЕКТРОЛИТИЧЕСКОГО ОСАЖДЕНИЯ СПЛАВА ЖЕЛЕЗО-ФОСФОР 1999
  • Серебровский В.И.
  • Серебровская Л.Н.
  • Серебровский В.В.
  • Коняев Н.В.
  • Батищев А.Н.
RU2164560C1
СПОСОБ ЭЛЕКТРОЛИТИЧЕСКОГО ОСАЖДЕНИЯ СПЛАВА ЖЕЛЕЗО-ВАНАДИЙ 2002
  • Серебровский В.И.
  • Серебровская Л.Н.
  • Серебровский В.В.
  • Коняев Н.В.
RU2231578C1
Способ электролитического осаждения сплава железо-кобальт 2015
  • Серебровский Владимир Исаевич
  • Блинков Борис Сергеевич
  • Коняев Николай Васильевич
  • Серебровский Вадим Владимирович
  • Серебровская Людмила Николаевна
  • Калуцкий Евгений Сергеевич
RU2634555C2
СПОСОБ ЭЛЕКТРОЛИТИЧЕСКОГО ОСАЖДЕНИЯ СПЛАВА ЖЕЛЕЗО-ВОЛЬФРАМ 2001
  • Серебровский В.И.
  • Серебровская Л.Н.
  • Серебровский В.В.
  • Коняев Н.В.
  • Батищев А.Н.
RU2192509C2
СПОСОБ ЭЛЕКТРОЛИТИЧЕСКОГО ОСАЖДЕНИЯ СПЛАВА ЖЕЛЕЗО-КОБАЛЬТ 2002
  • Серебровский В.И.
  • Серебровская Л.Н.
  • Серебровский В.В.
  • Коняев Н.В.
RU2230836C1
СПОСОБ ПОЛУЧЕНИЯ ИЗНОСОСТОЙКИХ ПОКРЫТИЙ 2012
  • Серебровский Владимир Исаевич
  • Серебровская Людмила Николаевна
  • Серебровский Вадим Владимирович
  • Коняев Николай Васильевич
  • Жданов Сергей Иванович
RU2484185C1

Реферат патента 2005 года СПОСОБ ЭЛЕКТРОЛИТИЧЕСКОГО ОСАЖДЕНИЯ СПЛАВА ЖЕЛЕЗО - АЛЮМИНИЙ

Изобретение относится к области электролитического осаждения твердых, износостойких покрытий, в частности железоалюминиевых покрытий, применяемых для восстановления и упрочнения поверхностей деталей. Способ включает осаждение из электролита, содержащего кг/м3: хлористый алюминий 50-600, железо хлористое (II) 200-700, хлористый калий (натрий) 80-100, соляную кислоту 0,5-1,5, на переменном асимметричном токе с коэффициентом асимметрии 1,2-6,катодной плотностью тока 30-70 А/дм2, температурой электролита 20-40°С, рН электролита 0,8. Технический результат: повышение производительности, прочности сцепления покрытия с основой, микротвердости и износостойкости.

Формула изобретения RU 2 263 727 C2

Способ электролитического осаждения сплава железо - алюминий из электролита, содержащего хлористый алюминий, хлористое железо (II), хлористый калий (натрий), соляную кислоту, отличающийся тем, что осаждение ведут из электролита, содержащего, кг/м3:

Хлористый алюминий50-600Железо хлористое (II)200-700Хлористый калий (натрий)80-100Соляная кислота0,5-1,5

на переменном асимметричном токе с коэффициентом асимметрии 1,2-6,катодной плотностью тока 30-70 А/дм2, температурой электролита 20-40°С, кислотностью электролита рН 0,8.

Документы, цитированные в отчете о поиске Патент 2005 года RU2263727C2

СПОСОБ ЭЛЕКТРОЛИТИЧЕСКОГО ОСАЖДЕНИЯ СПЛАВА ЖЕЛЕЗО-АЛЮМИНИЙ 0
  • В. Ж. Фрейманис
SU377432A1

RU 2 263 727 C2

Авторы

Серебровский В.И.

Серебровская Л.Н.

Серебровский В.В.

Коняев Н.В.

Сафронов Р.И.

Даты

2005-11-10Публикация

2003-10-27Подача