Изобретение относится к нефтяной промышленности и может быть использовано при добыче нефти из скважин с высоким газовым фактором.
Известна погружная насосная установка, содержащая газосепаратор и погружной насос (а.с. СССР №109579, 1954). Это устройство имеет низкую эффективность при откачке из скважин нефти с высоким газосодержанием.
Наиболее близкой к заявляемому изобретению является погружная насосная установка, содержащая погружной электродвигатель с гидрозащитой, газосепаратор, диспергатор и погружной насос (патент США №5628616, F 04 D 29/22, 1997). Известное устройство имеет низкие функциональные возможности и ограниченную область применения из-за малоэффективного диспергирования газожидкостной смеси лопастными колесами с отверстиями в верхнем диске и лопастях.
Задачей изобретения является расширение функциональных возможностей и области применения путем интенсификации диспергирования газожидкостной смеси и уменьшения объемного содержания в ней свободного газа.
Расширение функциональных возможностей и области применения достигается тем, что в погружной насосной установке, содержащей погружной электродвигатель с гидрозащитой, газосепаратор, диспергатор и погружной насос, газосепаратор содержит установленные на валу кавернообразующее лопастное колесо и сепарационный барабан с ребрами, при этом выходные кромки лопастей кавернообразующего колеса расположены на осевом расстоянии от входных кромок ребер сепарационного барабана, составляющем от 0,05 до 0,25 наружного диаметра сепарационного барабана.
Диспергатор выполнен в виде ступеней, содержащих статоры-втулки и роторы, расположенные внутри статоров-втулок, причем на поверхностях сопряжения статоров-втулок и роторов выполнены выступы и впадины. В погружной насосной установке расширение функциональных возможностей и области применения достигается также тем, что выступы и впадины выполнены в виде нарезок. Число ступеней диспергатора предпочтительно составляет не менее двух, а нарезки выполнены в виде винтовых канавок, которые могут иметь полукруглую форму меридианного сечения. Число ребер сепарационного барабана может быть равно или кратно числу лопастей кавернообразующего колеса, а газосепаратор и ступени диспергатора могут составлять единый модуль, в котором роторы ступеней диспергатора установлены на валу газосепаратора, где также может быть установлена осевая подшипниковая опора, снабженная винтовым микронасосом и всасывающим отверстием для промывки и охлаждения. Входные отверстия газосепаратора могут быть снабжены защитными износостойкими втулками, а внутри корпуса газосепаратора напротив вращающихся элементов проточной части могут устанавливаться защитные износостойкие гильзы.
Указанные выше отличительные признаки изобретения позволяют существенно интенсифицировать диспергирование газа в смеси перед входом в погружной насос, что значительно снижает вредное влияние свободного газа на работу насоса и дает возможность успешно вести добычу нефти из скважин с высоким газовым фактором, в которых известные технические решения практически неработоспособны.
На фиг.1 представлена схема погружной насосной установки в скважине; на фиг.2 - схема газосепаратора с диспергатором; на фиг.3 - вариант выполнения газосепаратора; на фиг.4 - поперечный разрез газосепаратора в месте расположения сепарационного барабана; на фиг.5 - осевое расстояние от выходных кромок лопастей кавернообразующего колеса до входных кромок ребер сепарационного барабана; на фиг.6 -статор-втулка ступени диспергатора; на фиг.7 - ротор ступени диспергатора; на фиг.8 - распределение пузырьков газа по размерам на входе в газосепаратор (а), на входе в диспергатор (б) и на входе в погружной насос (в); на фиг.9 - области эффективного применения прототипа и предлагаемого технического решения.
Погружная насосная установка (см. фиг.1) для эксплуатации скважины 1, пробуренной на пласт 2, содержит погружной электродвигатель 3 с гидрозащитой 4, газосепаратор 5, диспергатор 6 и погружной насос 7. Установка спущена в скважину 1 на насосно-компрессорных трубах 8. Электроэнергия к погружному электродвигателю 3 передается по кабелю 9. Между насосно-компрессорными трубами 8 и эксплуатационной колонной скважины 1 образовано затрубное пространство 10.
Газосепаратор 5 (см. фиг.2, 3, 4) содержит установленные на валу 11 кавернообразующее лопастное колесо 12 и сепарационный барабан 13 с ребрами 14. Выходные кромки 15 лопастей 16 кавернообразующего колеса 12 расположены при этом (см. фиг.5) на расстоянии L от входных кромок 17 ребер 14 сепарационного барабана 13, которое составляет от 0,05 до 0,25 наружного диаметра D сепарационного барабана 13.
Газосепаратор 5 содержит также шнек 18, радиальный подшипник 19, узел отвода 20 и входные отверстия 21.
В варианте газосепаратора 5 (см. фиг.3) радиальный подшипник 19 может не устанавливаться.
В одном из вариантов выполнения газосепаратор 5 содержит также установленную на валу 11 осевую подшипниковую опору 22, снабженную винтовым микронасосом 23 и всасывающим отверстием 24. В других вариантах выполнения входные отверстия 21 газосепаратора 5 снабжены защитными износостойкими втулками 25 и внутри корпуса газосепаратора 5 напротив вращающихся элементов проточной части (шнека 18, кавернообразующего колеса 12 и сепарационного барабана 13) установлены защитные износостойкие гильзы 26 и 27.
Диспергатор 6 состоит (см. фиг.2) из ступеней 28, содержащих статоры-втулки 29 и роторы 30, расположенные внутри статоров-втулок 29.
На поверхностях сопряжения статоров-втулок 29 и роторов 30 имеются выступы и впадины, которые в вариантах установки могут быть выполнены в виде нарезок, а нарезки - в форме винтовых канавок 31 и 32, которые могут иметь полукруглую форму меридианного сечения (см. фиг.6 и 7). В варианте выполнения установки число ступеней 28 диспергатора 6 составляет не менее двух.
В других вариантах установки число ребер 14 сепарационного барабана 13 равно или кратно числу лопастей 16 кавернообразующего колеса 12, а газосепаратор 5 и ступени 28 диспергатора 6 составляют единый модуль, в котором роторы 30 ступеней 28 диспергатора 6 установлены на валу 11 газосепаратора 5.
Погружная насосная установка для эксплуатации скважины работает следующим образом.
Погружной электродвигатель 3, электроэнергия к которому подводится по кабелю 9, приводит во вращение погружной насос 7 с газосепаратором 5 и диспергатором 6. Погружная насосная установка откачивает из пласта 2 смесь нефти, газа и воды в скважину 1. По мере подъема продукции пласта 2 по стволу скважины 1 давление в потоке падает, и попутный газ выделяется из нефти. При этом также увеличивается объемная доля газа в смеси. Газожидкостная смесь, поступающая из скважины, имеет в своем составе пузырьки газа различных размеров. Распределение пузырьков газа в смеси перед входом в газосепаратор 5 показано на фиг.8, кривая “а” (по оси абсцисс отложен диаметр d пузырька, по оси ординат - процентное содержание пузырьков данного диаметра в смеси).
Газожидкостная смесь из скважины 1 поступает во входные отверстия 21 газосепаратора 5 и далее - в шнек 18. При прохождении через шнек 18 повышается давление газожидкостной смеси, которая направляется затем в кавернообразующее колесо 12. Благодаря тому, что выходные кромки 15 лопастей 16 кавернообразующего колеса 12 находятся на осевом расстоянии L от входных кромок 17 ребер 14 сепарационного барабана 13, составляющем от 0,05 до 0,25 наружного диаметра D сепарационного барабана 13, за лопастями 16 кавернообразующего колеса 12 и ребрами 14 сепарационного барабана 13 происходит укрупнение части пузырьков газа, имеющих наибольшие размеры, в газовые суперкаверны. В дальнейшем эти укрупненные газовые включения отделяются от жидкости в сепарационном барабане 13 и отводятся в затрубное пространство 10 скважины 1 через узел отвода 20 газосепаратора 5. Наилучший эффект при этом достигается, если число ребер 14 сепарационного барабана 13 равно или кратно числу лопастей 16 кавернообразующего колеса 12. На вход в диспергатор 6 поступает смесь с меньшим газосодержанием и оставшимися в ней пузырьками газа меньшего среднего размера, чем в смеси на входе в газосепаратор 5 (см. фиг.8, кривая “б”).
При прохождении через ступени 28 диспергатора 6 газожидкостная смесь подвергается интенсивному измельчению. Наиболее эффективное дробление имеет место в том случае, когда число ступеней 28 диспергатора 6 составляет не менее двух, а выступы и впадины на поверхностях сопряжения статоров-втулок 29 и роторов 30 выполнены в виде нарезок.
Если же нарезки выполнены в виде винтовых канавок 31 и 32, имеющих полукруглую форму меридианного сечения, то одновременно с интенсивным дроблением пузырьков газа повышается давление в газожидкостной смеси, что приводит к еще более сильному уменьшению размеров пузырьков газа, а также к существенному снижению объемного содержания свободного газа в смеси.
Распределение пузырьков газа в смеси по размерам на входе в погружной насос 7 после прохождения диспергатора 6 показано на фиг.8, кривая “в”.
Далее мелкодисперсная смесь идет в погружной насос 7, который, не испытывая при этом вредного влияния газа, нагнетает ее по насосно-компрессорным трубам 8 на поверхность.
Конструктивное выполнение газосепаратора 5 и диспергатора 6 в виде единого модуля, в котором роторы 30 ступеней 28 диспергатора 6 установлены на валу 11 газосепаратора 5, позволяет упростить конструкцию и повысить надежность погружной насосной установки за счет сокращения числа фланцевых соединений.
В варианте установки на валу имеется осевая подшипниковая опора 22 для восприятия осевой силы. При работе устройства винтовой микронасос 23 забирает через отверстие 24 и прокачивает жидкость через пару трения осевой подшипниковой опоры 22, промывая и охлаждая ее, а также предотвращая ее засорение и износ твердыми частицами, содержащимися в скважинной продукции. В других вариантах устройства снабжение входных отверстий 21 газосепаратора 5 защитными износостойкими втулками 25 и установка внутри корпуса газосепаратора 5 напротив вращающихся элементов проточной части защитных износостойких гильз 26 и 27 продлевает ресурс погружной насосной установки при наличии значительного количества твердых частиц в откачиваемой продукции.
На фиг.9 представлены области эффективного применения прототипа и предлагаемого технического решения, полученные экспериментально путем сравнительных стендовых исследований на смеси “вода - ПАВ - газ”. В качестве пенообразующего ПАВ использовали дисолван 4411, объемная концентрация которого в жидкости составляла 0,05%. Смесь готовили с помощью эжектора. Такая смесь обеспечивает моделирование самых жестких условий нефтяных скважин. По оси абсцисс на фиг.9 отложена подача жидкости QЖ, по оси ординат - максимально допустимое объемное содержание свободного газа в смеси βвх на входе в погружной насосный агрегат, при котором обеспечивается эффективная эксплуатация. На стенде исследовали прототип и предлагаемое изобретение, выполненные в габарите 5 (наружные диаметры погружного насоса, сепаратора и диспергатора составляли 92 мм). Экспериментальные исследования показали, что предложенное изобретение имеет более широкую область применения и лучшие функциональные возможности по сравнению с прототипом.
Таким образом, предложенное техническое решение позволяет значительно снизить объемное содержание свободного газа и уменьшить размеры его пузырьков в газожидкостной смеси, поступающей на вход погружного насоса.
Этим достигается эффективная защита от вредного влияния свободного газа на работу погружного оборудования в скважинах с высоким газовым фактором, что существенно расширяет область применения и функциональные возможности насосной добычи нефти по сравнению с известными изобретениями.
название | год | авторы | номер документа |
---|---|---|---|
ПОГРУЖНАЯ НАСОСНАЯ УСТАНОВКА | 2006 |
|
RU2333395C2 |
СПОСОБ ОТКАЧКИ ГАЗОЖИДКОСТНОЙ СМЕСИ ИЗ СКВАЖИНЫ И ПОГРУЖНАЯ НАСОСНАЯ УСТАНОВКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2003 |
|
RU2232302C1 |
ВЫСОКООБОРОТНАЯ ПОГРУЖНАЯ УСТАНОВКА ДЛЯ ДОБЫЧИ НЕФТИ ИЗ СКВАЖИН С ВЫСОКИМ ГАЗОСОДЕРЖАНИЕМ | 2011 |
|
RU2480629C1 |
ПОГРУЖНАЯ НАСОСНАЯ УСТАНОВКА | 2003 |
|
RU2243416C1 |
СПОСОБ ОТКАЧКИ ПЛАСТОВОЙ ЖИДКОСТИ ИЗ СКВАЖИН И ПОГРУЖНАЯ НАСОСНАЯ УСТАНОВКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2006 |
|
RU2310771C1 |
ПОГРУЖНАЯ НАСОСНАЯ СИСТЕМА | 2004 |
|
RU2241858C1 |
ГАЗОСЕПАРАТОР-ДИСПЕРГАТОР ПОГРУЖНОГО НАСОСА ДЛЯ ДОБЫЧИ НЕФТИ | 2012 |
|
RU2523943C1 |
ГАЗОСТАБИЛИЗИРУЮЩИЙ НАСОСНЫЙ МОДУЛЬ (ВАРИАНТЫ) | 2015 |
|
RU2593728C1 |
ПОГРУЖНОЙ НАСОСНЫЙ АГРЕГАТ | 2020 |
|
RU2748295C1 |
Способ откачивания пластовой жидкости с повышенным содержанием газа и абразивных частиц и погружная установка с лопастным насосом и газосепаратором для его осуществления | 2020 |
|
RU2749586C1 |
Изобретение относится к нефтяной промышленности и может быть использовано при добыче нефти из скважин с высоким газовым фактором. Установка содержит погружной электродвигатель с гидрозащитой, газосепаратор, диспергатор и погружной насос. Газосепаратор включает установленное на валу кавернообразующее лопастное колесо и сепарационный барабан с ребрами, при этом выходные кромки лопастей кавернообразующего колеса расположены на осевом расстоянии от входных кромок ребер сепарационного барабана, составляющем 0,05 до 0,25 наружного диаметра сепарационного барабана, а диспергатор выполнен в виде ступеней, содержащих статоры-втулки и роторы, расположенные внутри статоров втулок, причем на поверхностях сопряжения статоров-втулок и роторов выполнены выступы и впадины. Изобретение направлено на расширение функциональных возможностей и области применения путем интенсификации диспергирования газожидкостной смеси и уменьшения объемного содержания в ней свободного газа. 8 з. п. ф-лы, 9 ил.
US 5628616 A, 13.05.1997 | |||
СПОСОБ ОТКАЧИВАНИЯ ЖИДКОСТИ СКВАЖИННЫМ НАСОСОМ И ГАЗОСЕПАРАТОР СКВАЖИННОГО ЦЕНТРОБЕЖНОГО НАСОСА | 1991 |
|
RU2027912C1 |
Погружной центробежный насос | 1980 |
|
SU937780A1 |
Способ перекачивания газожидкостных смесей центробежным насосом | 1975 |
|
SU620665A1 |
US 3867056 A, 18.02.1975. |
Авторы
Даты
2004-07-10—Публикация
2003-04-24—Подача