УСТРОЙСТВО ДЛЯ СЕПАРАЦИИ АЛМАЗОСОДЕРЖАЩИХ МАТЕРИАЛОВ Российский патент 2004 года по МПК B07C5/342 B03B13/06 

Описание патента на изобретение RU2236311C1

Изобретение относится к области обогащения полезных ископаемых, содержащих люминесцирующие под воздействием излучения минералы.

Известны устройства для сепарации (сепараторы марок ЛС-Д-4-03, ЛС-Д-4-04, ЛС-20-05-2М), содержащие транспортирующий механизм, источник импульсного возбуждения, фотоприемник, задатчик порога разделения, блок выработки команд с исполнительным механизмом. Работа сепараторов основана на импульсном режиме рентгеновского облучения потока материала, поступающего в зону облучения, как правило, по наклонному лотку. Проходящие через зону облучения зерна обогащаемого материала в моменты действия импульсов рентгеновского излучения подвергаются облучению, под воздействием которого целый ряд минералов, в том числе и алмазы, люминесцируют. Из материалов по изучению природы люминесценции алмазов известно, что процессы разгорания и затухания люминесценции характеризуются, по крайней мере, двумя компонентами свечения, отличающимися постоянной времени. Время затухания короткой компоненты люминесценции не превышает 10-7 c, постоянная времени затухания длительной компоненты люминесценции достигает (1-10)·10-3 c. Оценка интенсивности рентгенолюминесценции минералов осуществляется не в моменты возбуждения импульсов рентгеновского излучения, а с некоторой задержкой после окончания рентгеновского импульса. Таким образом, реализуется измерение величины послесвечения минералов, т.е. уровня интенсивности длительной компоненты затухания их люминесценции. Причем регистрация этих сигналов может осуществляться как со стороны облучения рентгеновским излучением, так и с противоположной стороны (так называемый режим рентгеновской абсорбции), (см. Руководство по эксплуатации сепаратора люминесцентного ЛС-Д-4-03, С.-Петербург, 1997, с.7-8; с.10; с.13-15; с.17-21).

Недостатком известных устройств сепарации является низкая селективность при обогащении алмазосодержащих руд, особенно при повышенном содержании в месторождениях таких сопутствующих минералов как циркон, полевой шпат, плагиоклазы и т.п. Дело в том, что у алмазов диапазон интенсивности люминесценции, в том числе и ее длительной компоненты затухания, очень широк и зависит от многих факторов: размеров и цвета кристаллов, чистоты их поверхности, наличия трещин и сколов на их гранях, пространственной ориентации алмаза в момент пересечения зоны облучения рентгеновским излучением, содержания примесей в кристаллической решетке алмаза и т.д. При этом у слаболюминесцирующих алмазов сигналы длительной компоненты люминесценции соизмеримы с уровнем "шумов" оптического и электронного трактов регистрации. Для надежного извлечения таких алмазов требуется большое усиление электрических сигналов, а уровень порога разделения, с которым сравнивается сигнал от алмаза, приходится вплотную приближать к уровню "шумов". В то же время большая часть сопутствующих минералов, особенно цирконов, обладающих яркой люминесценцией, имеет значительную величину сигналов длительной компоненты послесвечения, превышающую порог разделения. В результате такие сопутствующие минералы воспринимаются сепаратором как алмазы и извлекаются в концентрат. Увеличение уровня порога разделения в целях предотвращения регистрации сопутствующих минералов приводит к потерям слаболюминесцирующих алмазов, т.е. к снижению извлечения.

Известно также устройство для сепарации, содержащее транспортирующий механизм, источник импульсного возбуждения, фотоприемник, блок стабилизации интенсивности люминесценции, блок измерения скорости изменения интенсивности послесвечения люминесценции, задатчик порога разделения, блок выработки команд с исполнительным механизмом, (см. а.с. 1459014, В 03 В 13/06, 1995, бюл. №25, прототип).

Недостатком указанного устройства является низкая селективность процесса сепарации. Это объясняется несколькими причинами. Как для алмазов, так и для сопутствующих минералов характерно многообразие форм кривых затухания люминесценции, описываемых сложными математическими выражениями, т.е. для большинства образцов люминесцирующих объектов кривые спада длительной компоненты люминесценции отличаются от экспоненциальной функции. Вследствие этого скорости изменения интенсивностей послесвечения даже среди одного типа минералов (например, полевых шпатов) в заданном фиксированном интервале времени будут иметь очень широкий разброс. Этот же вывод справедлив и для других типов минералов, и для алмазов. Таким образом, заранее заданные граничные значения разброса скоростей, которому должны удовлетворять скорости затухания длительной компоненты люминесценции полезного минерала, должны иметь довольно широкий диапазон. При этом неизбежно, что измеренные указанным способом значения скоростей затухания люминесценции для значительной части сопутствующих минералов будут находиться внутри границ диапазона скоростей, выбранного для полезного минерала. В результате такие минералы будут регистрироваться как алмазы. Сужение диапазона граничных значений скоростей в целях повышения селективности неизбежно приводит к снижению извлечения полезного минерала. Кроме того, необходимость приведения амплитуды сигналов к одному уровню (устройством стабилизации амплитуды), вносит дополнительные искажения в процесс вычисления скорости затухания длительной компоненты.

Техническим результатом изобретения является повышение селективности процесса сепарации за счет использования различий в кинетике рентгенолюминесценции сепарируемых минералов.

Достижение технического результата обеспечивает устройство для сепарации алмазосодержащих материалов, содержащее транспортирующий механизм, источник импульсного возбуждения, фотоприемник, установленный со стороны падающего рентгеновского излучения или со стороны, противоположной падающему рентгеновскому излучению, блок обработки сигналов интенсивности люминесценции, блок выработки команд с исполнительным механизмом, которое снабжено блоком вычисления величины соотношения компонент люминесценции, выполненным в виде программируемого контроллера, а блок обработки сигналов люминесценции выполнен в виде аналого-цифрового преобразователя, при этом выход источника импульсного возбуждения соединен с первым входом программируемого контроллера и со вторым входом аналого-цифрового преобразователя, выход фотоприемника соединен с первым входом аналого-цифрового преобразователя, выход которого соединен с вторым входом программируемого контроллера, выход которого соединен с входом блока выработки команд исполнительного механизма.

В основу работы устройства заложено экспериментально установленное различие в кинетике рентгенолюминесценции алмазов и сопутствующих минералов. В момент воздействия импульса рентгеновского излучения уровень интенсивности люминесценции многих минералов, в том числе и алмаза, определяется суммой короткой J1 и длительной J2 компонент рентгенолюминесценции, вклад которых зависит от физических свойств минерала, а также от времени разгорания (затухания) длительной компоненты свечения. Длительность импульсов излучения 0,5 мс вполне достаточна для разгорания длительной компоненты J2 минералов до уровня ее надежной регистрации. По окончании импульса рентгеновского излучения, с учетом затяжки его заднего фронта, короткая компонента люминесценции минералов J1 затухает за время не более 150 мкс.

В предлагаемом устройстве в момент воздействия импульса рентгеновского излучения производится измерение суммарной интенсивности короткой и длительной компонент люминесценции J1+J2, а затем с задержкой, выбираемой в интервале 0,5-3,0 мс после окончания импульса рентгеновского излучения, производится измерение интенсивности длительной компоненты люминесценции J2. Принятие решения “алмаз - сопутствующий минерал” осуществляется после вычисления соотношения:

где (J1+J2) - амплитуда сигнала суммарной интенсивности короткой и длительной компонент люминесценции в момент действия импульса рентгеновского излучения;

J2 - амплитуда сигнала интенсивности длительной компоненты люминесценции.

Для обеспечения работы устройства в таком режиме введен блок вычисления величины соотношения компонент люминесценции, выполненный в виде программируемого контроллера, а блок обработки сигналов интенсивности люминесценции выполнен в виде аналого-цифрового преобразователя.

Для типовых режимов работы устройства, когда длительность импульсов рентгеновского излучения составляет 0,5 мс, а период следования импульсов - 4,0 мс многочисленными экспериментальными исследованиями установлено следующее:

I. В варианте измерения интенсивностей люминесценции (J1+J2) и J2 со стороны облучения материала справедливы соотношения:

К<28 - для 99,83% исследованных алмазов;

К>26 - для люминесцирующих минералов, представленных наибольшим процентным содержанием в сопутствующих рудах (циркон, полевой шпат, пикроильменит, плагиоклазы и т.п.).

II. В варианте измерения интенсивностей люминесценции (J1+J2) и со стороны, противоположной направлению облучения материала, справедливы соотношения:

К<34 - для алмазов;

К>32 - для сопутствующих минералов.

Однако определение величины К для каждого люминесцирующего минерала при существующих схемных решениях, используемых в сепараторах с импульсным режимом рентгеновского излучения, в ряде случаев невозможно. Это объясняется очень большим динамическим диапазоном интенсивностей люминесценции (J1+J2) и J2, величины которых имеют разницу, достигающую трех порядков, и зависят от физических свойств люминесцирующих объектов, их размеров, пространственной ориентации в момент облучения, сколов граней и т.п. С целью предотвращения потерь слаболюминесцирующих алмазов при измерении длительной компоненты люминесценции J2 в электронном тракте регистрации сепаратора с линейной характеристикой усиления требуется устанавливать значительные коэффициенты усиления. При этом яркие сигналы при измерении суммарной интенсивности (J1+J2) вызывают насыщение усилительных каскадов, сигналы входят в ограничение по амплитуде, в результате величина электрического сигнала не соответствует истинной интенсивности и, как следствие, неизбежны искажения при определении величины К.

Структурная схема устройства показана на чертеже.

Устройство содержит бункер 1, питатель 2, транспортирующий механизм 3, источник импульсного возбуждения 4, фотоприемник 5 (6), установленный либо со стороны падающего излучения, либо со стороны, противоположной падающему излучению. Блок обработки 7 сигналов интенсивности люминесценции, выполненный в виде аналого-цифрового преобразователя, первый вход которого соединен с фотоприемником 5 (6), а второй вход соединен с источником импульсного возбуждения 4. Блок вычисления 8 величины соотношения компонент люминесценции, выполненный в виде программируемого контроллера, первый вход которого соединен с источником импульсного возбуждения 4, второй вход - с выходом блока 7, а выход - с блоком 9 выработки команд с исполнительным механизмом.

Устройство работает следующим образом.

Материал из бункера 1 поступает на питатель 2, а с него - на транспортирующий механизм 3 (как вариант - наклонный лоток), который подает материал в зону облучения. Источник импульсного возбуждения 4 формирует импульсы рентгеновского излучения, которыми облучается материал. Световые сигналы люминесценции минералов в моменты действия импульсов рентгеновского излучения и после их окончания преобразуются либо фотоприемником 5 (в варианте измерения интенсивности люминесценции со стороны падающего рентгеновского излучения) либо фотоприемником 6 (в варианте измерения интенсивности люминесценции со стороны, противоположной падающему рентгеновскому излучению) в электрические сигналы, которые подаются на первый вход блока обработки 7 сигналов интенсивности люминесценции, который выполнен в виде аналого-цифрового преобразователя со встроенной цифровой фильтрацией "шумов" фотоприемника 5 (6), на второй вход которого поступает сигнал с источника импульсного возбуждения 4. Цифровая обработка сигналов с высокой точностью обеспечивает измерение сигналов люминесценции в широком динамическом диапазоне, превышающем три порядка. С выхода блока 7 сигналы поступают на второй вход блока вычисления 8 величины соотношения компонент люминесценции, на первый вход которого поступают сигналы с источника 4. Блок 7 выполнен в виде программируемого контроллера, который производит вычисление соотношения сигналов компонент люминесценции (J1+J2)/J2, определение критерия сортировки минералов и вырабатывает команду на отделение минерала.

Таким образом, оценка соотношения компонент люминесценции (J1+J2)/J2 выливается в вычисление разницы электрических сигналов, получаемых на выходе аналого-цифрового преобразователя 7. Алгоритм вычисления соотношения компонент люминесценции следующий: измеряется сигнал U1, пропорциональный суммарной интенсивности люминесценции минерала (J1+J2), в момент действия импульса рентгеновского излучения, запоминается его величина на время, превышающее длительность задержки импульса рентгеновского излучения до измерения интенсивности длительной компоненты люминесценции J2 (например, до начала следующего импульса рентгеновского излучения), измеряется сигнал U2, пропорциональный интенсивности J2; после этого вычисляется разностный сигнал Up=U1-U2. Для принятия решения “алмаз - сопутствующий минерал” сравнивается величина разностного сигнала Up с пороговым значением Uпорог=К. Критерий Up<Uпорог означает, что произошла регистрация алмаза, в этом случае дается команда на отделение полезного минерала в концентрат. Вариант, когда Up>Uпорог означает, что через зону регистрации прошел сопутствующий минерал, команда на отделение не выдается. К началу следующего импульса рентгеновского излучения осуществляется обнуление измеренных сигналов, тем самым электронный тракт регистрации подготавливается для последующих измерений. Выработанные блоком 8 команды на отделение минералов поступают на блок выработки команд с исполнительным механизмом 9, который направляет полезный минерал в концентратный приемник 10. Остальной материал вместе с сопутствующими минералами попадает в хвостовой приемник 11.

Применение предлагаемого устройства для сепарации по сравнению с известными устройствами позволяет сократить суммарное количество отсечек в 4-6 раз, повысить кондицию концентрата в 3-5 раз, уменьшить количество отсечек на один алмаз в 4-5 раз и довести его до значения 1,23 отсечки на алмаз, т.е. повысить селективность процесса.

Похожие патенты RU2236311C1

название год авторы номер документа
СПОСОБ СЕПАРАЦИИ АЛМАЗОСОДЕРЖАЩИХ МАТЕРИАЛОВ 2006
  • Годун Константин Викторович
  • Рассулов Виктор Асафович
  • Кудря Владимир Викторович
  • Ольховский Александр Михайлович
  • Пацианский Феликс Анатольевич
RU2336127C1
УСТРОЙСТВО ДЛЯ СЕПАРАЦИИ АЛМАЗОСОДЕРЖАЩИХ МАТЕРИАЛОВ 2003
  • Тирмяев А.Ф.
  • Комаров Н.А.
  • Чупров В.А.
RU2236312C1
СПОСОБ СЕПАРАЦИИ АЛМАЗОСОДЕРЖАЩИХ МАТЕРИАЛОВ 2003
  • Тирмяев А.Ф.
  • Комаров Н.А.
  • Чупров В.А.
RU2235599C1
СПОСОБ СЕПАРАЦИИ АЛМАЗОСОДЕРЖАЩИХ МАТЕРИАЛОВ 2006
  • Миронов Василий Павлович
  • Тирмяев Александр Филиппович
RU2322304C1
СПОСОБ РЕНТГЕНОЛЮМИНЕСЦЕНТНОЙ СЕПАРАЦИИ МИНЕРАЛОВ И РЕНТГЕНОЛЮМИНЕСЦЕНТНЫЙ СЕПАРАТОР ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2015
  • Ульянов Виталий Геннадьевич
  • Вишневский Алексей Анатольевич
  • Димант Борис Ильич
  • Новоселов Андрей Георгиевич
  • Пилюгин Александр Валентинович
  • Яковлев Виктор Николаевич
RU2604317C1
СПОСОБ РАЗДЕЛЕНИЯ МИНЕРАЛОВ ПО ИХ ЛЮМИНЕСЦЕНТНЫМ СВОЙСТВАМ 2010
  • Владимиров Евгений Николаевич
  • Казаков Леонид Васильевич
  • Цветков Владимир Иосифович
RU2437725C1
СПОСОБ ЛЮМИНЕСЦЕНТНОЙ СЕПАРАЦИИ МИНЕРАЛОВ ИЗ ОБОГАЩАЕМОГО МАТЕРИАЛА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2007
  • Бычин Виталий Гаврилович
  • Кичигин Сергей Викторович
  • Непеин Валерий Николаевич
RU2362635C1
СПОСОБ СЕПАРАЦИИ МИНЕРАЛОВ 2001
  • Шлюфман Е.М.
RU2196013C1
СПОСОБ РЕНТГЕНОЛЮМИНЕСЦЕНТНОЙ СЕПАРАЦИИ МИНЕРАЛОВ И РЕНТГЕНОЛЮМИНЕСЦЕНТНЫЙ СЕПАРАТОР ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2013
  • Казаков Леонид Васильевич
  • Колосова Наталья Павловна
  • Кучин Павел Николаевич
  • Цветков Владимир Иосифович
RU2517613C1
СПОСОБ СЕПАРАЦИИ МИНЕРАЛОВ 2006
  • Шлюфман Евгений Мартынович
RU2310523C1

Реферат патента 2004 года УСТРОЙСТВО ДЛЯ СЕПАРАЦИИ АЛМАЗОСОДЕРЖАЩИХ МАТЕРИАЛОВ

Изобретение относится к области обогащения полезных ископаемых, содержащих люминесцирующие под воздействием излучения минералы. Техническим результатом изобретения является повышение селективности процесса сепарации за счет использования различий в кинетике рентгенолюминесценции сепарируемых минералов. Для этого устройство содержит транспортирующий механизм, источник импульсного возбуждения, фотоприемник, установленный со стороны падающего рентгеновского излучения или со стороны, противоположной падающему рентгеновскому излучению, блок обработки сигналов интенсивности люминесценции, блок выработки команд с исполнительным механизмом. Причем оно снабжено блоком вычисления величины соотношения компонент люминесценции, выполненным в виде программируемого контроллера, а блок обработки сигналов люминесценции выполнен в виде аналого-цифрового преобразователя. При этом выход источника импульсного возбуждения соединен с первым входом программируемого контроллера и со вторым входом аналого-цифрового преобразователя, выход фотоприемника соединен с первым входом аналого-цифрового преобразователя, выход которого соединен с вторым входом программируемого контроллера, выход которого соединен с входом блока выработки команд исполнительного механизма. 1 ил.

Формула изобретения RU 2 236 311 C1

Устройство для сепарации алмазосодержащих материалов, содержащее транспортирующий механизм, источник импульсного возбуждения, фотоприемник, установленный со стороны падающего рентгеновского излучения или со стороны, противоположной падающему рентгеновскому излучению, блок обработки сигналов интенсивности люминесценции, блок выработки команд с исполнительным механизмом, отличающееся тем, что оно снабжено блоком вычисления величины соотношения компонент люминесценции, выполненным в виде программируемого контроллера, а блок обработки сигналов люминесценции выполнен в виде аналого-цифрового преобразователя, при этом выход источника импульсного возбуждения соединен с первым входом программируемого контроллера и со вторым входом аналого-цифрового преобразователя, выход фотоприемника соединен с первым входом аналого-цифрового преобразователя, выход которого соединен с вторым входом программируемого контроллера, выход которого соединен с входом блока выработки команд исполнительного механизма.

Документы, цитированные в отчете о поиске Патент 2004 года RU2236311C1

СПОСОБ СЕПАРАЦИИ МИНЕРАЛОВ 1986
  • Скворцов В.Н.
SU1459014A1
SU 1603588 А1, 20.08.1999
СПОСОБ РЕНТГЕНОЛЮМИНЕСЦЕНТНОЙ СЕПАРАЦИИ МИНЕРАЛОВ (ВАРИАНТЫ) 2001
  • Казаков Л.В.
  • Потапов В.М.
  • Райзман В.Ш.
RU2191076C1
УСТРОЙСТВО ДЛЯ СЕПАРАЦИИ МИНЕРАЛЬНОГО СЫРЬЯ 1995
  • Шлюфман Е.М.
RU2101101C1
RU 2066244 С1, 10.09.1996
1991
RU2004356C1
БАГАЖНАЯ ПОЛКА САМОЛЕТА 2000
  • Коренец Сергей Валентинович
RU2219080C1
Вертикально-замкнутый тележечный конвейер 1987
  • Трифонов Валерий Алексеевич
  • Беззубик Валерий Алексеевич
  • Музалев Алексей Васильевич
SU1528699A1

RU 2 236 311 C1

Авторы

Тирмяев А.Ф.

Комаров Н.А.

Чупров В.А.

Даты

2004-09-20Публикация

2003-04-28Подача