Изобретение относится к деформационно-термической обработке материалов с целью изменения физико-механических свойств и может быть использовано в машиностроении, авиадвигателестроении и медицине при изготовлении полуфабрикатов из титана.
Известны способы обработки металлов с целью повышения их свойств, в частности, для получения ультрамелкозернистой структуры, обеспечивающей улучшение физико-механических характеристик. Эти способы могут сочетать в себе пластическую деформацию и термомеханическую обработку.
Известен способ обработки титановых заготовок по а.с. СССР № 1737920, МПК С 22 F 1/18, опубл. 15.12.94, заключающийся в деформировании материала при температуре смены механизма гомогенной деформации первичным двойникованием на механизм гетерогенной деформации послойным течением.
Известен способ термической обработки деталей из титановых сплавов, включающий нагрев до 150-200°С, выдержку в течение 2-3 часов, охлаждение и последующий нагрев до 500-750С с выдержкой 0,25-2,0 часа (патент РФ № 2020187, МПК С 22 F 1/18, опубл. 30.09.94).
Известен способ термомеханической обработки титановых заготовок, включающий нагрев в β-область, деформацию при температуре нагрева со степенью 60-70%, повторную деформацию в направлении, перпендикулярном первоначальной, и окончательную деформацию в (α+β)-области, после чего осуществляют закалку в воде и старение при 630-650°С (а.с. СССР № 1613505, МПК С 22 F 1/18, опубл. 15.12.90).
Известные способы обработки не позволяют получать одновременно высокую прочность и пластичность в материале заготовок.
Наиболее близким к предложенному является способ получения ультрамелкозернистых титановых заготовок (патент РФ № 2175685, С 22 F 1/18, В 21 J 5/00, опубл. 10.11.01), включающий интенсивную пластическую деформацию заготовки в пересекающихся вертикальном и горизонтальном каналах, проводимую в интервале температур 500-250°С с накопленной логарифмической степенью деформаций е≥4, и последующую термомеханическую обработку чередованием холодной деформации со степенью 30-90% с промежуточным и окончательным отжигом в интервале температур 250-500°С в течение 0,5-2,0 часов.
Данный способ позволяет получать за счет интенсивной пластической деформации ультрамелкозернистую структуру в обрабатываемом материале и повысить уровень прочностных свойств. Однако получаемый уровень механических свойств (сочетание высокой прочности и удовлетворительной пластичности) недостаточны для использования в ряде ответственных конструкций.
Предложенное изобретение направлено на улучшение механических свойств обрабатываемого материала с целью повышения одновременно прочностных и пластических характеристик.
Поставленная задача решается способом получения ультрамелкозернистых титановых заготовок, включающим интенсивную пластическую деформацию с накопленной логарифмической степенью деформации е≥4 и последующую термомеханическую обработку чередованием холодной деформации со степенью 30-90% с промежуточным и окончательным отжигом в интервале температур 250-500°С в течение 0,5-2,0 часов, в котором в отличие от прототипа пластическую деформацию заготовки осуществляют путем пропускания ее через матрицу с винтовым каналом, сечение которого, перпендикулярное оси прессования, постоянно вдоль этой оси, а угол наклона винтовой линии к оси прессования изменяется по длине или высоте матрицы, имея нулевое значение на ее начальном и конечном участке.
При продавливании заготовки через винтовую матрицу она испытывает интенсивную сдвиговую деформацию. Ввиду того, что сечение винтового канала, перпендикулярное оси прессования, постоянно, то форма заготовки и ее поперечное сечение не меняются. Это позволяет осуществлять ее многократное прессование с целью накопления интенсивных деформаций и упрочнения заготовки.
Известно использование гидромеханического прессования с кручением путем многократного пропускания призматической заготовки через матрицу с винтовым каналом с целью получения больших пластических деформаций материалов, а именно сдвиговых деформаций (Я.Е. Бейгельзимер и др. Новые схемы накопления больших пластических деформаций с использованием гидроэкструзии. Физика и техника высоких давлений, 1999, т. 9, № 3, с. 109).
Сочетание интенсивной сдвиговой деформации и последующей термомеханической обработки в указанных режимах позволяет сформировать в материале термически стабильную ультрамелкозернистую структуру с размером зерен 0,1 μк и менее. При этом по сравнению с прототипом повышается уровень прочности на растяжение в 2 раза и увеличивается пластичность на 28-30%. Кроме того, в результате такой обработки первоначально анизотропный материал становится изотропным, что является отличительной структурной особенностью получаемого материала.
Таким образом, предложенная совокупность признаков способа позволяет получить новый неожиданный эффект, приводящий к значительному улучшению физико-механических свойств разрабатываемого материала. Это позволяет сделать вывод о соответствии заявленного изобретения критерию “Изобретательский уровень”.
Способ осуществляется следующим образом.
Призматическую титановую заготовку из сплава ВТ 1-0 в хорошо отожженном крупнозернистом состоянии с размером зерен 15-20 μк помещают в прямолинейную заходную часть матрицы с винтовым каналом, через который заготовку продавливают до тех пор, пока ее задний торец не выйдет в прямолинейную выходную часть матрицы. Ввиду того, что сечение винтового канала постоянно, в ходе процесса форма заготовки и ее поперечное сечение не изменяются. Это позволяет осуществлять ее многократное прессование с целью накопления интенсивных деформаций и упрочнения заготовки.
Деформацию проводят за несколько последовательных проходов для равномерной проработки структуры. Количество проходов определяется достижением накопленной логарифмической степени деформации е≥4.
После окончания этапа пластической деформации заготовку вынимают из оснастки и охлаждают до комнатной температуры. Затем ее подвергают правке и обработке для снятия дефектного слоя, после чего проводят контроль микротвердости, механических свойств на растяжение и микроструктуры.
На следующем этапе, называемом термомеханической обработкой (ТМО), заготовку подвергают ступенчатой многоходовой прокатке на четырехвалковом стане с промежуточными и окончательным отжигами. Температура отжига на промежуточной стадии составляет 500-350°С, время 0,5-2,0 час. На окончательной стадии температура отжига составляет 350-250°С, время 0,5-2,0 час. Суммарная степень деформации заготовки составляет 30-90%. После окончания этапа ТМО повторно проводят контроль микроструктуры, микротвердости и механических свойств.
Пример конкретного выполнения.
Берем исходную горячекованную заготовку из технически чистого титана марки ВТ1-0 в виде прутка сечением 25×25 мм и длиной 100 мм. Пруток подвергали винтовому прессованию в 3 прохода по описанному способу, в результате чего была достигнута степень деформации е=6. Максимальное значение угла наклона винтовой линии к оси прессования составляло γ=60°.
Затем заготовку подвергали правке и обработке для снятия дефектного слоя.
Контроль параметров и механических свойств показал:
- размер зерен d=0,3 μк
- предел прочности
(вдоль заготовки/поперек заготовки) σв=500 МПа/830 МПа
- предел текучести
(вдоль заготовки/поперек заготовки) σ=460 МПа/760 МПа
- относительное удлинение
(вдоль заготовки/поперек заготовки) δ=12%/17%
На следующем этапе пруток подвергали термомеханической обработке, а именно: многоходовой прокатке на четырехвалковом стане с промежуточными и окончательными отжигами. Температура отжига на промежуточной стадии составляла 350°С, время 1,0 час. На окончательной стадии температура отжига составляла 300°С, время 1,0 час.
Результаты испытаний:
- размер зерен d=0,1 μк
- предел прочности
(вдоль заготовки/поперек заготовки) σв=780 МПа/795 МПа
- предел текучести
(вдоль заготовки/поперек заготовки) σ02=750 МПа/760 МПа
- относительное удлинение
(вдоль заготовки/поперек заготовки) δ=30%/28%
Как показывают полученные результаты, комбинация термомеханической обработки (прокатки) с винтовым прессованием значительно улучшает не только прочность, но и пластичность материала заготовки, причем достигается изотропия механических свойств в продольном и поперечном направлениях, что часто является недостижимым при традиционных методах обработки.
Таким образом, предложенные способ получения ультрамелкозернистых титановых заготовок позволяет существенно улучшить структуру и механические свойства обрабатываемого материала и использовать его в ответственных конструкциях.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПОЛУЧЕНИЯ УЛЬТРАМЕЛКОЗЕРНИСТЫХ ТИТАНОВЫХ ЗАГОТОВОК | 2000 |
|
RU2175685C1 |
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОПРОЧНЫХ ТИТАНОВЫХ ПРУТКОВ КРУГЛОГО СЕЧЕНИЯ С УЛЬТРАМЕЛКОЗЕРНИСТОЙ СТРУКТУРОЙ | 2011 |
|
RU2464116C1 |
СПОСОБ ТЕРМОМЕХАНИЧЕСКОЙ ОБРАБОТКИ ТИТАНОВЫХ ЗАГОТОВОК | 2005 |
|
RU2285737C1 |
СПОСОБ ПОЛУЧЕНИЯ УЛЬТРАМЕЛКОЗЕРНИСТЫХ ТИТАНОВЫХ ЗАГОТОВОК | 2003 |
|
RU2251588C2 |
СПОСОБ ПОЛУЧЕНИЯ УЛЬТРАМЕЛКОЗЕРНИСТЫХ ТИТАНОВЫХ ЗАГОТОВОК | 2014 |
|
RU2583551C2 |
СПОСОБ ПОЛУЧЕНИЯ СУБМИКРОКРИСТАЛЛИЧЕСКОЙ СТРУКТУРЫ В НЕЛЕГИРОВАННОМ ТИТАНЕ | 2008 |
|
RU2389568C1 |
СПОСОБ ТЕРМОМЕХАНИЧЕСКОЙ ОБРАБОТКИ ЗАГОТОВОК ИЗ ДВУХФАЗНЫХ ТИТАНОВЫХ СПЛАВОВ | 2011 |
|
RU2469122C1 |
Способ получения заготовок из технически чистого титана с размером зерна менее 0,4 мкм | 2015 |
|
RU2622536C2 |
СПОСОБ ПОЛУЧЕНИЯ УЛЬТРАМЕЛКОЗЕРНИСТЫХ ЗАГОТОВОК ИЗ ТИТАНОВЫХ СПЛАВОВ | 2007 |
|
RU2364660C1 |
СПОСОБ ОБРАБОТКИ КРУПНОГАБАРИТНЫХ ЗАГОТОВОК ИЗ ТИТАНОВЫХ СПЛАВОВ | 2010 |
|
RU2439195C1 |
Изобретение относится к деформационно-термической обработке материалов и может быть использовано в машиностроении, авиадвигателестроении и медицине при изготовлении полуфабрикатов из титана. Предложенный способ включает интенсивную пластическую деформацию с накопленной логарифмической степенью деформации е≥4 и последующую термомеханическую обработку, проведенную путем чередования холодной деформации со степенью 30-90% с промежуточным и окончательным отжигом в интервале температур 250-500°С в течение 0,5-2,0 часов, при этом интенсивную пластическую деформацию заготовки осуществляют путем пропускания ее через матрицу с винтовым каналом, сечение которого, перпендикулярное оси прессования, постоянно вдоль этой оси, а угол наклона винтовой линии к оси прессования изменяется по длине или высоте матрицы, имея нулевое значение на ее начальном и конечном участке. Техническим результатом изобретения является разработка способа, обеспечивающего повышение прочностных и пластических характеристик обрабатываемого материала.
Способ получения ультрамелкозернистых титановых заготовок, включающий интенсивную пластическую деформацию с накопленной логарифмической степенью деформации е≥4 и последующую термомеханическую обработку чередованием холодной деформации со степенью 30-90% с промежуточным и окончательным отжигом в интервале температур 250-500°С в течение 0,5-2,0 ч, отличающийся тем, что интенсивную пластическую деформацию заготовки осуществляют путем пропускания ее через матрицу с винтовым каналом, сечение которого, перпендикулярное оси прессования, постоянно вдоль этой оси, а угол наклона винтовой линии к оси прессования изменяется по длине или высоте матрицы, имея нулевое значение на ее начальном и конечном участках.
СПОСОБ ПОЛУЧЕНИЯ УЛЬТРАМЕЛКОЗЕРНИСТЫХ ТИТАНОВЫХ ЗАГОТОВОК | 2000 |
|
RU2175685C1 |
Способ термомеханической обработки крупногабаритных заготовок из титановых сплавов | 1989 |
|
SU1613505A1 |
US 6521059 А, 18.02.2003 | |||
US 3867208 A, 18.02.1975 | |||
JP 11269621 А, 05.10.1999. |
Авторы
Даты
2004-09-27—Публикация
2003-05-05—Подача