Изобретение относится к области энергообеспечения газовых двигателей внутреннего сгорания и прочих объектов газопотребления (низкого давления) от газа высокого давления.
В настоящее время наиболее употребительным является способ питания газовых дизелей (ДВС) от газобаллонной системы (ГБС) компримированного газа. При данном способе [1] газ высокого давления (20 МПа и более) из ГБС через управляемые запорные вентили подают вначале в газовый редуктор, где снижают его давление до близкого к атмосферному, после чего в специальном смесителе приготавливают пригодную для ДВС газовоздушную смесь. Недостатком здесь является то, что компримированный газ, пройдя глубокое редуцирование, фактически впустую растрачивает потенциальную энергию его расширения и до потребителя он доходит только в качестве газомоторного топлива (ГМТ).
В связи с этим задачей данного изобретения является изыскание такого технического решения, которое позволяло бы в полной мере полезно использовать потенциальную энергию расширения КПГ при сбросе его давления.
Принимая за ближайший аналог-прототип упомянутый выше способ газового питания ДВС по [1], можно отметить, что решение поставленной задачи технически достигается посредством того, что в известном способе энергопитания газового двигателя внутреннего сгорания (ДВС) путем забора из газобаллонной системы (ГБС) компримированного и затем подачи к двигателю уже редуцированного природного газа (ПГ) согласно заявленному изобретению газ из баллонов через управляемые запорные вентили вначале подают в снабженный межступенчатыми теплообменниками-подогревателями (МТП) многоступенчатый пневмодвигатель (МПД), а выходящий оттуда газ уже низкого давления направляют в ресивер и систему питания ДВС, причем отбор мощности осуществляют не только с ДВС, но и с выходного вала МПД. Газ из ресивера дополнительно (помимо ДВС) можно направлять в систему газоснабжения прочих объектов.
Из сказанного следует, что сущность предложенного способа состоит в целенаправленном и новом использовании МПД совместно с МТП. И на этом надо остановиться особо. Дело в том, что каждое их этих устройств само по себе было известно ранее [2], однако применялись они для иных целей. Заметим, что пневмодвигатели могут быть динамического или объемного действия и соответственно турбинного или поршневого типа. Причем при решении поставленной задачи в качестве аналогов могут выступать известные конструкции так называемых комбинированных двигателей [3], включающих помимо поршневого двигателя газовую турбину, компрессор и охладитель в различной их взаимной компоновке, однако построенных по известному принципу - путем передачи на турбину отходящих от ДВС газов. Иными словами, в известных системах для привода турбин используется рабочее тело, являющееся продуктом выброса ДВС. В нашем же случае турбина (или совокупность турбин в системе МПД) наоборот участвует в создании рабочего тела для ДВС. Есть и еще одна и, пожалуй, даже более значимая особенность работы турбинных агрегатов. Эта особенность связана с необходимостью МПД выполнять по предложенному способу функцию трансформатора давления газа, причем в широких пределах перепада давлений - от 20 МПа (и более) до десятых долей МПа. А при таком глубоком редуцировании газа, если применять для этого МПД, как говорят, “в чистом виде”, то этот агрегат будет выполнять роль детандера и передача на его выходной вал мощности будет сопровождаться криогенным процессом и понижением температуры его конструктивных частей. Однако если это присуще и полезно для холодильных машин, то для нашего случая явление холодообразования становится негативным, а поэтому для снижения его влияния в систему работы МПД вводят МТП, передача тепла на которые может осуществляться от охладительной системы ДВС или от другого какого-то источника. В любом случае энергозатраты на работу МТП будут несравненно меньше выгод от введения МПЛ.
Путь движения газа от его источника к потребителям по предложенному способу проиллюстрирован на чертеже. Так газ высокого давления из ГБС через управляемые запорные вентили ВК (где М - конкретный номер вентиля) и общий расходный вентиль В5 подают в МПД, оборудованный системой МТП. Выходящий оттуда газ низкого давления скапливается в ресивере, а далее через вентиль В6 и газовый редуктор Р1 (который снижает давление газа с десятых долей МПа до давления, близкого к атмосферному), его направляют в газовоздушный смеситель ДВС. При дополнительной потребности газа низкого давления “на сторону” воздействуют на вентиль В7 и редуктор Р2.
Работа рассматриваемой системы по предложенному способу обеспечивает отбор мощности на выходных валах двух агрегатов - ДВС и МПД и передачу газа низкого давления дополнительным потребителям. Причем все это может работать совместно или по отдельности. Основное достоинство предложенного способа - это существенное повышение коэффициента полезного действия всех резервных возможностей КПГ. В настоящее время нам неизвестны подобные технические системы, осуществляющие свою работу на таком высоком уровне, и в этом мы видим “мировую новизну” нашего предложения. Критерий “изобретательский уровень” достигается новой функциональностью работы МПД совместно с МТП, позволяющей получать газ низкого давления в ресивере и одновременно снимать дополнительную по сравнению с прототипом мощность с выходного вала МПД, причем при существенном снижении негативных для данного случая явлений холодообразования на всех частях этого агрегата.
“Промышленная применимость” определяется доступностью изготовления всех агрегатов рассматриваемой системы и проверкой их локальной работоспособности. Заметим, что предпочтительной областью использования предложенного способа являются объекты стационарного назначения с разветвленной сетью потребителей. При рассмотрении возможности задействования данного способа в транспортных средствах нужно учитывать следующие особенности такой эксплуатации:
1) Применяемые в промышленности МПД с глубоким редуцированием давления имеют повышенные (в десять и более раз) обороты своих выходных валов по сравнению с аналогичными по мощности ДВС, в связи с чем возникнет необходимость кинематического соединения выходных валов этих двух агрегатов с целью отбора мощности уже с их единого вала - вала ДВС, поскольку все ведомые на транспортной машине элементы кинематически связаны именно с валом ДВС.
2) Работа по предложенному способу силовой установки транспортного средства за счет включения туда агрегатов МПД с МТП увеличит общую его металлоемкость. И поэтому, как нам представляется, данный вопрос может иметь свою актуальность только на большегрузных средствах транспортирования.
Источники информации
1. Ю.Н. Васильев и др. Транспорт на газе. - М.: Недра. - 1992 г.
2. В.Н. Новотельнов и др. Криогенные машины. - СПб.: Политехник. - 1991 г.
3. В.И. Кругов и др. Теплотехника. - М.: Машиностроение. - 1986 г.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ АВТОНОМНОГО ЭНЕРГООБЕСПЕЧЕНИЯ ПРИВОДНЫХ УСТРОЙСТВ СТРОИТЕЛЬНЫХ И ПОДОБНЫХ ИМ МАШИН | 2002 |
|
RU2229565C1 |
Способ производства энергии для питания электродвигателей и система для производства энергии | 2021 |
|
RU2764327C1 |
Система и способ получения энергии для питания транспортного средства | 2022 |
|
RU2804171C1 |
Система наддува двигателя внутреннего сгорания (ДВС) с использованием свободнопоршневого генератора газа (СПГГ) | 2023 |
|
RU2819471C1 |
СИСТЕМА ПИТАНИЯ ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ С ДВОЙНЫМ НАДДУВОМ НА СЖИЖЕННОМ ПРИРОДНОМ ГАЗЕ | 2020 |
|
RU2769914C2 |
СПОСОБ ПОЛУЧЕНИЯ ИЗБЫТОЧНОГО ДАВЛЕНИЯ В РЕСИВЕРЕ | 2013 |
|
RU2533588C2 |
СИСТЕМА ПИТАНИЯ ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ НА СЖИЖЕННОМ ПРИРОДНОМ ГАЗЕ | 2019 |
|
RU2769916C2 |
СПОСОБ ОСУЩЕСТВЛЕНИЯ ЦИКЛА ПОРШНЕВОГО ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ И ПОРШНЕВОЙ ДВИГАТЕЛЬ ВНУТРЕННЕГО СГОРАНИЯ | 1994 |
|
RU2075613C1 |
СИЛОВАЯ УСТАНОВКА | 1989 |
|
RU2029880C1 |
СПОСОБ РАБОТЫ СИСТЕМЫ МОНИТОРИНГА ПАРАМЕТРОВ ГАЗОБАЛЛОННОГО ОБОРУДОВАНИЯ И УЧЕТА РАСХОДА ТОПЛИВА ДВИГАТЕЛЯ ТРАНСПОРТНОГО СРЕДСТВА, РАБОТАЮЩЕГО НА ГАЗОВОМ ИЛИ ГАЗОВОМ И ЖИДКОМ ТОПЛИВЕ | 2022 |
|
RU2797731C1 |
Изобретение относится к двигателестроению, в частности к области энергообеспечения газовых двигателей внутреннего сгорания и прочих объектов газопотребления низкого давления от газа высокого давления. Изобретение позволяет в полной мере полезно использовать потенциальную энергию расширения компримированного газа при сбросе его давления. Способ энергопитания газового двигателя внутреннего сгорания, в котором путем забора из газобаллонной системы компримированного и затем подачи к двигателю уже редуцированного природного газа газ из баллонов через управляемые запорные вентили вначале подают в снабженный межступенчатыми теплообменниками-подогревателями многоступенчатый пневмодвигатель, а выходящий оттуда газ уже низкого давления направляют в ресивер и систему питания ДВС. Отбор мощности осуществляют не только с ДВС, но и с выходного вала МПД. 1 з.п. ф-лы, 1 ил.
ВАСИЛЬЕВ Ю.Н., ГРИЦЕНКО А.И., ЗОЛОТОРЕВСКИЙ Л.С | |||
Транспорт на газе | |||
- М., 1992, с | |||
Печь-кухня, могущая работать, как самостоятельно, так и в комбинации с разного рода нагревательными приборами | 1921 |
|
SU10A1 |
Способ работы двигателя внутреннего сгорания | 1989 |
|
SU1687825A1 |
СПОСОБ ПИТАНИЯ ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ | 1990 |
|
RU2006608C1 |
Способ работы газобаллонной установки двигателя внутреннего сгорания и газобалонная установка | 1989 |
|
SU1795140A1 |
RU 2070654 С1, 20.12.1996 | |||
УСТРОЙСТВО ДЛЯ ОБКАТКИ РОЛИКАМИ ДЕТАЛЕЙ ВОЛНИСТОГО ПРОФИЛЯ | 0 |
|
SU206618A1 |
Секция трибунного строения | 1986 |
|
SU1441039A1 |
СПОСОБ И ОПТИЧЕСКОЕ УСТРОЙСТВО ДЛЯ АНАЛИЗА МЕТКИ НА СВЕТОПРОНИЦАЕМОЙ ИЛИ ПРОЗРАЧНОЙ КРИВОЛИНЕЙНОЙ СТЕНКЕ | 2009 |
|
RU2528150C2 |
Авторы
Даты
2004-09-27—Публикация
2003-01-09—Подача