ПРИМЕНЕНИЕ ЭЛЕКТРОАКТИВНЫХ ПОЛИМЕРОВ КЛАССА ПОЛИГЕТЕРОАРИЛЕНОВ В КАЧЕСТВЕ ПОКРЫТИЙ, ОБЛАДАЮЩИХ ПОВЫШЕННОЙ ЭМИССИОННОЙ СПОСОБНОСТЬЮ Российский патент 2004 года по МПК H01J1/30 H01J21/20 H01J31/12 

Описание патента на изобретение RU2237313C2

Изобретение относится к области электроники органических материалов и может найти применение в разных областях техники, в частности в электротехнике, в приборах и оборудовании с использованием полевых эмиссионных источников электронов.

Известно, что наличие тонких диэлектрических слоев на поверхности материалов, например окислов металлов, в некоторых случаях модифицирует электронные свойства поверхности таким образом, что при этом существенно снижается эффективная работа выхода (ЭРВ) и улучшаются эмиссионные свойства поверхности металла, покрытой таким окислом [1].

Одно из объяснений подобной модификации заключается в том, что выбором того или иного окисла можно создать в контактной области металл-окисел такой потенциальный барьер, высота которого будет меньше, чем потенциальный барьер контакта металл-вакуум. Потому эмиссия носителей заряда из металла в слой диэлектрика будет облегчена по сравнению с аналогичным процессом в вакуум. Для того чтобы на этот эффект не влияли объемные свойства диэлектрика, толщина покрытия должна быть меньше глубины проникновения поверхностного заряда. В этом случае регистрируемая ЭРВ системы металл-покрытие будет существенно меньше, чем ЭРВ чистой поверхности металла.

Использование окислов с малой глубиной проникновения поверхностного заряда заставляет прибегать к таким технологиям изготовления покрытий, сложность которых обусловлена необходимостью обеспечения высокой точности контроля за толщиной технологических слоев. Последнее условие часто накладывает ограничения на размер эмитирующей поверхности.

Известен холодноэмиссионный пленочный катод и способ его получения [2], содержащий подложку с нанесенной на нее углеродной пленкой, выполненной в виде нерегулярной структуры, состоящей из углеродных микроребер и/или микронитей, сориентированных перпендикулярно поверхности подложки, с масштабом 0,01-1 мкм и плотностью расположения 0,1-10 мкм-2.

Известно использование углеродсодержащих материалов в качестве покрытий эмиттеров [3]. Эмиттеры формировались из никеля, которые покрывались углеродсодержащим материалом для увеличения стабильности эмиссионного тока и уменьшения работы выхода. В качестве одного из способов изготовления предлагаемого покрытия явилось предварительное нанесение пленки из полимера или мономера с последующим ее термическим отжигом или пиролизом до полной карбонизации покрытия.

К недостаткам данного материала можно отнести многостадийность технологии нанесения покрытия со стадией высокотемпературного отжига с плохо контролируемым процессом пиролиза высокомолекулярных соединений на поверхности металла. Это ограничивает выбор подходящих металлов для эмиссионных целей, так как многие металлы при температурах отжига углеродсодержащего соединения окисляются и создают дополнительную окисную пленку на границе раздела металл-углеродсожержащее покрытие. Кроме того, стадия высокотемпературного и относительно длительного отжига значительно усложняет процесс изготовления покрытия и делает устройство дорогостоящим.

Известны полигетероарилены для изготовления термостойких материалов и способ их получения [4]. Применение их ограничивается термостойкими материалами.

Задачей, решаемой предлагаемым изобретением, является расширение класса материалов, применяемых для создания эмиссионных автокатодов.

Поставленная задача решается применением электроактивных полимеров класса полигетероариленов в качестве эмиссионных покрытий.

Суть изобретения заключается в следующем.

Нанесение на проводящую подложку (с металлическим или полупроводниковым типом проводимости) тонких диэлектрических слоев приводит к формированию потенциального барьера на границе “металл-диэлектрик” значительно меньшей величины по сравнению с потенциальным барьером на границе “проводник-вакуум”на величину, равную энергии сродства к электрону. В связи с этим эмиссия электронов из проводника в диэлектрик происходит при меньших напряжениях, чем из металла в вакуум. Однако в диэлектрике длина свободного пробега электрона мала и потому при использовании диэлектриков типа окислов металлов в качестве соответствующего покрытия их толщина выбирается очень малой (до нескольких десятков ангстрем).

Этого недостатка лишены некоторые электроактивные полимеры, в которых перенос заряда может осуществляться не по зоне проводимости, а по узкой подзоне электронных состояний, расположенных в середине запрещенной зоны. Для обеспечения стабильности переноса заряда по такой подзоне толщина полимерного покрытия на проводящей подложке не должна превышать глубину проникновения поверхностного заряда. Глубина проникновения поверхностного заряда в электроактивных полимерах изменяется в интервале от 0.1 мкм до 10 мкм в зависимости от вида полимера.

Проведенные исследования показали, что полимеры класса полигетероариленов полностью удовлетворяют требованиям, необходимым для достижения положительного эффекта. Перенос заряда в тонких пленках этих полимеров осуществляется по узкой зоне, расположенной в запрещенной зоне между потолком валентной зоны и дном зоны проводимости. Они обладают относительно большой энергией сродства к электрону ~2эВ и потому могут эффективно понизить потенциальный барьер на границе “проводник-полимер” по сравнению с границей “проводник-вакуум”.

Измерения автоэлектронной эмиссии проводили на системах металл-полимер полупроводник-полимер, в которых в качестве металла использовали Сu, W и др., в качестве полупроводниковой подложки кремниевые пластины, а в качестве электроактивных полимеров полимеры класса полигетероариленов типа полидифениленфталид и другие. Это термо- и хемостойкие полимеры, обладающие хорошей растворимостью, позволяющей проводить эффективную их очистку, а также получать прочные, прозрачные в видимой области спектра, однородные пленки.

Измерения эффективной работы выхода электронов (ЭРВЭ) металлической поверхности, покрытой полимером, показали, что она уменьшается по сравнению с РВЭ чистой поверхности металлов в среднем на 1,8 эВ. А автоэлектронная эмиссия возникает в электрическом поле при напряженности Е ~12 В/мкм. На фиг.1 приведен пример автоэмиссионного катода, полученного из полимеров класса полигетероариленов, на фиг.2 показана вольт-амперная характеристика (ВАХ), типичная для подобных систем в координатах InI/U2=f(U-1). Эта ВАХ хорошо подчиняется известному закону Фаулера-Нордгейма, что видно из наличия линейной зависимости на представленной фиг.2.

На фиг.1 позицией 1 обозначен слой подложки, 2 - слой полимера, 3 - окна, формируемые в полимере 2 для создания эмиссионных тонких пленок, 4 - вытягивающий слой (вытягивающий электрод).

Пример 1. На подложку 1, выполненную, например, из меди или вольфрама, наносили 0,5 вес.% раствор 2 полимера из класса полигетероариленов в органическом растворителе, который позволял получать пленки толщиной меньше ГППЗ. Нанесение осуществляли методом центрифугирования, который позволял получать однородные по толщине пленки по всей поверхности подложки 1. Нагрев пленки 2 производился с целью удаления остатков органического растворителя из пленки. Выбор режима нагрева определялся из следующих соображений. Минимальная температура нагрева 150°С соответствовала максимальному времени нагрева 24 часа; максимальная температура 350°С соответствовала минимальному времени нагрева 0,5 часа. Выбранный температурный интервал определен следующими условиями. При температуре ниже 150°С не происходит эффективное удаление остатков растворителя даже при значительном увеличении времени выдержки. Это обусловлено тем, что энергия термической активации комплекса растворитель-полимер, возникающего в процессе формования пленки полимера на подложке, ЕAK~кТA, где k постоянная Больцмана, ТА соответствует температуре, при которой начинается разрушение комплекса и составляет 150°С. При температурах выше 350°С начинается процесс дестабилизации структуры полимера на воздухе, в результате реакции окисления.

Пример 2. Второй способ изготовления автоэлектронного катода обеспечивает изготовление на поверхности катода эмитирующих электроны окон 3 - участков в наперед заданных местах и определенных размеров и формы. При этом способе на первой стадии изготовления полевого эмиссионного катода необходимо обеспечить формование полимерной пленки 2 толщиной, превышающей ГППЗ параметр. Полимерная пленка большой толщины препятствует осуществлению автоэлектронной эмиссии. Уменьшение на локальных наперед заданных участках слоя полимерного материала 3 до толщины меньше ГППЗ позволяет получить эмиссию электронов с поверхности этих участков при приложении электрического поля. Уменьшение толщины в локальных участках 3 пленки может быть осуществлено, например, литографическими методами. Толщина полимерной пленки полученных участков не должна превышать ГППЗ.

Пример 3. При третьем способе изготовления сначала на поверхности электропроводящей подложки 1 формируют полимерную пленку 2 толщиной, значительно превышающей ГППЗ параметр. На следующей стадии изготовления катода на поверхность полимерной пленки 2 известным способом наносят слой металла 4. В слое металла 4 создают окна 3 в наперед заданных местах нужного размера и формы. На следующей стадии в области отверстий 3 верхнего металлического слоя осуществляют уменьшение толщины слоя полимерного покрытия 2 до значений меньших ГППЗ, например, методом травления, на внешней поверхности полимерной пленки формируют вытягивающий электрод 4.

Этот вариант выполнения способа позволяет

- в одном технологическом цикле совместить изготовление локальных участков катода, эмитирующих электроны при приложении электрического поля;

- создать спэйсер, задающий расстояние от эмитирующей поверхности до вытягивающего электрода необходимой толщины;

- создать вытягивающий электрод на поверхности спэйсера.

Совокупность предложенных операций решает главную цель предложенного изобретения создание технологичных долговечных покрытий, обладающих высокой эмиссионной стабильностью.

Таким образом, заявляемое изобретение существенно расширяет класс материалов, используемых для создания полевых эмиттеров. При этом полимерные пленки, обладающие высокой адгезией, получают достаточно простым и дешевым способом. Получаемые пленки обладают достаточно стабильными механическими и химическими характеристиками при эксплуатации, сохраняют свойства без химической деградации даже в условиях высокого вакуума в течение длительного рабочего времени.

Изобретение может найти применение в области, например, создания полевых эмиссионных дисплеев, отличающихся плоскопанельной конструкцией, небольшой массой, высоким разрешением, цифровой системой управления и низкой потребляемой мощностью при высоком качестве изображения. Широкая область возможного применения распространяется на технические решения от приборов вакуумной электроники до ярких источников света самого различного назначения. Современные технологии позволяют получать полимеры из ряда полигетероариленов, которые обладают термо- и хемостойкостью, хорошая растворимость которых позволяет проводить эффективную очистку, а также получать прочные, прозрачные в видимой области спектра, однородные пленки.

Источники информации

1 А.С. РФ №323051, МПК (7) H 01 J 1/30, Бюл. №8, 24.11.1972.

2. Патент РФ №2161838, МПК (7) Н 01 J 9/02, 1/30, 10.01.2001.

3. Патент США №6379210, МПК (7) H 01 J 1/30, 2002.

4. А.С. РФ №734898, МПК С 08 G 61/10,61/12, БИ №18, 1980.

Похожие патенты RU2237313C2

название год авторы номер документа
ПОЛЕВОЙ ЭМИССИОННЫЙ КАТОД И СПОСОБЫ ЕГО ИЗГОТОВЛЕНИЯ (ВАРИАНТЫ) 2002
  • Корнилов Виктор Михайлович
  • Лачинов Алексей Николаевич
  • Салазкин Сергей Николаевич
  • Юмагузин Юлай Мухаметович
RU2271053C2
СПОСОБ УМЕНЬШЕНИЯ ПОРОГОВ НАЧАЛА АВТОЭМИССИИ, ПОВЫШЕНИЯ ПЛОТНОСТИ АВТОЭМИССИОННЫХ ТОКОВ И ДЕГРАДАЦИОННОЙ СТОЙКОСТИ СИЛЬНОТОЧНЫХ МНОГООСТРИЙНЫХ АВТОЭМИССИОННЫХ КАТОДОВ 2018
  • Яфаров Равиль Кяшшафович
RU2692240C1
Автоэмиссионный эмиттер с нанокристаллической алмазной пленкой 2021
  • Вихарев Анатолий Леонтьевич
  • Иванов Олег Андреевич
  • Яшанин Игорь Борисович
RU2763046C1
ИСТОЧНИК ЭЛЕКТРОНОВ С АВТОЭЛЕКТРОННЫМИ ЭМИТТЕРАМИ 2014
  • Минаков Павел Владимирович
  • Сень Василий Васильевич
  • Пилевский Андрей Александрович
  • Поройков Александр Юрьевич
  • Бавижев Мухамед Данильевич
  • Конов Магомет Абубекирович
  • Рахимов Алексей Александрович
  • Рахимов Александр Турсунович
RU2586628C1
ПОВЫШЕНИЕ КРУТИЗНЫ ВАХ СИЛЬНОТОЧНЫХ ПОЛЕВЫХ ИСТОЧНИКОВ ЭЛЕКТРОНОВ 2021
  • Яфаров Андрей Равильевич
  • Золотых Дмитрий Николаевич
  • Яфаров Равиль Кяшшафович
RU2765635C1
СПОСОБ ПОВЫШЕНИЯ ПЛОТНОСТИ И СТАБИЛЬНОСТИ ТОКА МАТРИЦЫ МНОГООСТРИЙНОГО АВТОЭМИССИОННОГО КАТОДА 2016
  • Бушуев Николай Александрович
  • Шалаев Павел Данилович
  • Яфаров Андрей Равильевич
  • Яфаров Равиль Кяшшафович
RU2653843C2
СПОСОБ ИЗГОТОВЛЕНИЯ КАТОДНО-СЕТОЧНОГО УЗЛА ЭЛЕКТРОННОГО ПРИБОРА С АВТОЭЛЕКТРОННОЙ ЭМИССИЕЙ 2017
  • Конов Магомет Абубекирович
  • Бавижев Мухамед Данильевич
  • Тегаев Рамазан Исаевич
RU2653531C1
ОСТРИЙНО-ЛЕЗВИЙНЫЙ АВТОЭМИССИОННЫЙ КАТОД ТИПА "КАНЦЕЛЯРСКАЯ КНОПКА" 2023
  • Бессонов Дмитрий Александрович
  • Журавлев Сергей Дмитриевич
  • Крачковская Татьяна Михайловна
  • Шестеркин Василий Иванович
RU2823119C1
СПОСОБ ИЗГОТОВЛЕНИЯ СИСТЕМ ДИСПЛЕЯ С ПЛОСКИМ ЭКРАНОМ И КОМПОНЕНТОВ 1994
  • Кьюмар Нэлин
  • Ксай Ченгганг
RU2141698C1
СПОСОБ ИЗГОТОВЛЕНИЯ АВТОЭМИССИОННОГО КАТОДА 2002
  • Батурин А.С.
  • Курносов Д.А.
  • Никольский К.Н.
  • Шешин Е.П.
  • Чесов Р.Г.
RU2225052C1

Иллюстрации к изобретению RU 2 237 313 C2

Реферат патента 2004 года ПРИМЕНЕНИЕ ЭЛЕКТРОАКТИВНЫХ ПОЛИМЕРОВ КЛАССА ПОЛИГЕТЕРОАРИЛЕНОВ В КАЧЕСТВЕ ПОКРЫТИЙ, ОБЛАДАЮЩИХ ПОВЫШЕННОЙ ЭМИССИОННОЙ СПОСОБНОСТЬЮ

Использование: в электронной технике, в частности при применении электроактивных полимеров класса полигетероариленов типа полидифениленфталида в качестве покрытий, обладающих повышенной эмиссионной способностью. Техническим результатом изобретения является расширение класса материалов, применяемых для создания эмиссионных автокатодов. 2 ил.

Формула изобретения RU 2 237 313 C2

Применение электроактивных полимеров класса полигетероариленов типа полидифениленфталида в качестве покрытий, обладающих повышенной эмиссионной способностью.

Документы, цитированные в отчете о поиске Патент 2004 года RU2237313C2

Способ получения полигетероариленов с фталимидиновыми группами 1981
  • Рафиков Сагид Рауфович
  • Салазкин Сергей Николаевич
  • Шуманский Михаил Егорович
  • Ахметзянов Шамиль Сабирович
SU966093A1
ХОЛОДНОЭМИССИОННЫЙ ПЛЕНОЧНЫЙ КАТОД И СПОСОБЫ ЕГО ПОЛУЧЕНИЯ 1997
  • Дзбановский Н.Н.(Ru)
  • Пилевский А.А.(Ru)
  • Рахимов А.Т.(Ru)
  • Суетин Н.В.(Ru)
  • Тимофеев М.А.(Ru)
RU2161838C2
Прибор, замыкающий сигнальную цепь при повышении температуры 1918
  • Давыдов Р.И.
SU99A1
US 6379210 В2, 30.04.2002
1999
RU2159972C1
RU 2150154 C1, 27.05.2000.

RU 2 237 313 C2

Авторы

Корнилов В.М.

Лачинов А.Н.

Салазкин С.Н.

Юмагузин Ю.М.

Даты

2004-09-27Публикация

2002-11-25Подача