СПОСОБ ПОЛУЧЕНИЯ ХЛОРИДА ВОДОРОДА ИЗ ОТХОДЯЩИХ ХЛОРСОДЕРЖАЩИХ ГАЗОВ ТИТАНОМАГНИЕВОГО ПРОИЗВОДСТВА Российский патент 2004 года по МПК C01B7/00 C01B7/01 

Описание патента на изобретение RU2239595C1

Изобретение относится к цветной металлургии, в частности к получению хлорида водорода из отходящих хлорсодержащих газов титаномагниевого производства.

Известен способ утилизации хлора из отходящих газов магниевого производства (а.с. СССР №140211, опубл. БИ №15, 1962 г.), включающий подачу хлорсодержащих газов в высокотемпературный факел горения топлива (жидкого или газообразного), после чего продукты горения - топочные газы, содержащие хлорид водорода и хлор, направляют в печь для обезвоживания карналлита (вращающуюся печь или печь кипящего слоя). Затем хлорид водорода поглощают водой, что позволяет более полно очистить газы от хлора.

Недостатком данного способа является низкая степень улавливания хлорида водорода, что не позволяет получить хлорид водорода с высокой концентрацией.

Известен способ обезвреживания хлорсодержащих газов (а.с. СССР №306861, опубл. 21.06.1971 г., БИ 20), включающий подачу хлорсодержащих газов в факел горения - распылительную форсунку, куда подают распыливаемое дизельное топливо. Распыление производят водяным паром при расходе пара 100 кг/мин. Температура в камере сгорания 1000°С.

Недостатком данного способа является то, что использование дизельного топлива экономически невыгодно, конструктивное оформление процесса трудоемко.

Известен способ обезвреживания хлорсодержащих газов титаномагниевого производства, включающий смешивание хлорсодержащих газов с воздухом до концентрации 200-480 хлора на 1 м3 воздуха, подачу хлорсодержащей смеси в факел горения углеродсодержащего топлива, восстановление в процессе горения до хлорида водорода с последующей утилизацией путем хлорирования и упаривания известкового молока.

Недостатком данного способа является то, что подача в факел горения воздуха не позволяет получить хлорид водорода высокой концентрации.

Известен способ получения хлорида водорода (патент RU №2139237, опубл. 10.10.1999 г.), по количеству общих признаков принятый за ближайший аналог-прототип и включающий одновременную подачу в топку углеродно-водородного топлива, воздуха, хлорсодержащего газа и водяного пара. В топке происходит конверсия хлора и образуется газовая смесь (топочные газы), содержащая хлорид водорода с температурой 1300-1600°С. В теплообменнике осуществляют охлаждение газовой смеси двухступенчато воздухом сначала до температуры 750-800°С и затем до температуры 450-500°С.

Недостатком данного способа является то, что для снижения температуры топочных газов добавляют вторичный воздух, это значительно увеличивает количество топочных газов и снижает концентрацию в них хлорида водорода. При рабочих температурах топочных газов 750-1150°С концентрация хлорида водорода не превышает 9-15%. При дальнейшей переработке топочных газов при данной концентрации хлорида водорода получают соляную кислоту низкой концентрации, что не позволяет использовать ее в дальнейшем при химических производствах.

Технический результат направлен на устранение недостатков прототипа и на повышение содержания хлорида водорода в топочных газах, что позволяет получить из них соляную кислоту повышенной концентрации.

Технический результат достигается тем, что предложен способ получения хлорида водорода из отходящих хлорсодержащих газов титаномагниевого производства, включающий сжигание хлорсодержащего газа в факеле горения углеродно-водородного топлива в присутствии паров воды с получением топочных газов и их охлаждение, новым является то, что предварительно перед подачей в факел горения хлорсодержащие газы и водяной пар смешивают при объемном соотношении (1,1-4,0):1, сжигание хлорсодержащего газа в факеле горения осуществляют без подачи воздуха, а объемное соотношение паров воды и природного газа к хлору в факеле горения поддерживают равным (0,8-1,2):1.

Экспериментально установлено, что смешивание хлорсодержащих газов с водяным паром позволяет интенсифицировать сжигание хлора, поскольку в присутствии воды происходит генерация радикалов Н, О, ОН, отвечающих за процесс горения. Это приводит к увеличению соотношения Н/Сl и позволяет в несколько раз увеличить объем хлора, подаваемого на сжигание, что увеличивает концентрацию хлорида водорода в топочных газах.

Экспериментально установлено, что подача воды при определенном объемном соотношении к хлору позволяет снизить температуру процесса за счет эндотермичности процесса

2Сl2+2Н2O=4НСl+O2-Q.

Все эти условия при одинаковой дозировке хлора в факел горения без разбавления вторичным воздухом приводят к увеличению концентрации хлорида водорода в топочных газах.

Непременным условием достижения технического результата является поддержание определенного объемного соотношения паров воды и природного газа к хлору равным (0,8-1,2):1, это позволяет повысить концентрацию хлорида водорода за счет полного использования ионов водорода в смеси.

Проведенный заявителем анализ уровня техники, включающий поиск по патентным и научно-техническим источникам информации и выявление источников, содержащих сведения об аналогах заявленного изобретения, позволил установить, что заявитель не обнаружил источник, характеризующийся признаками, тождественными (идентичными) всем существенным признакам изобретения. Определение из перечня выявленных аналогов прототипа, как наиболее близкого по совокупности признаков аналога, позволил установить совокупность существенных по отношению к усматриваемому заявителем техническому результату отличительных признаков в заявленном способе получения хлорида водорода из отходящих хлорсодержащих газов титаномагниевого производства, изложенных в пунктах формулы изобретения.

Следовательно, заявленное изобретение соответствует условию “новизна”.

Для проверки соответствия заявленного изобретения условию “изобретательский уровень” заявитель провел дополнительный поиск известных решений, чтобы выявить признаки, совпадающие с отличительными от прототипа признаками заявленного способа. Результаты поиска показали, что заявленное изобретение не вытекает для специалиста явным образом из известного уровня техники, поскольку из уровня техники, определенного заявителем, не выявлено влияние предусматриваемых существенными признаками заявленного изобретения преобразований для достижения технического результата. Следовательно, заявленное изобретение соответствует условию “изобретательский уровень”.

Примеры осуществления способа.

Пример 1 (по прототипу)

Хлорсодержащие газы титаномагниевого производства в количестве 1200 нм3/час (в пересчете на 100% хлор) подают в факел горения топки, куда подают 750 нм3/час природного газа, воздух и водяной пар. В камере горения происходит конверсия хлора и образуется газовая смесь, содержащая хлорид водорода. Температура в зоне реакции составляет 1300-1600°С. Получают топочные газы с концентрацией хлорида водорода 9,0%. Топочные газы после охлаждения обрабатывают известковым молоком (100-150 г/дм3 СаО) с получением раствора хлорида кальция.

Пример 2

Хлорсодержащие газы титаномагниевого производства в количестве 1200 нм3/час (в пересчете на 100% хлор) смешивают с 500 нм3/час водяного пара в магистральном трубопроводе хлорсодержащего газа путем врезки отдельного трубопровода для водяного пара. Хлорсодержащие газы и водяной пар смешивают при соотношении хлор : пар = 2,4 и подают в топку, где сжигают природный газ в количестве 500 нм3/час. Температура в зоне реакции составляет 750°С. При этом в факеле горения топки образуется объемное соотношение смеси водяного пара и природного газа к хлору, равное 0,83. Получают топочные газы с концентрацией хлорида водорода 13,6%. Топочные газы после охлаждения обрабатывают известковым молоком (100-150 г/дм3 СаО) с получением раствора хлорида кальция или пропускают через абсорбер, заполненный водой, с получением соляной кислоты заданной концентрации.

Пример 3

Хлорсодержащие газы титаномагниевого производства в количестве 1200 нм3/час (в пересчете на 100% хлор) смешивают с 700 нм3/час водяного пара в магистральном трубопроводе хлорсодержащего газа путем врезки отдельного трубопровода для водяного пара. Хлорсодержащие газы и водяной пар смешивают при соотношении хлор : пар = 1,7 и подают в горелку, где сжигают природный газ в количестве 400 нм3/час. Температура в зоне реакции составляет 450°С. При этом в факеле горения топки образуется объемное соотношение смеси водяного пара и природного газа к хлору, равное 0,91. Получают топочные газы с концентрацией хлорида водорода 18%. Топочные газы после охлаждения обрабатывают известковым молоком (100-150 г/дм3 СаО) с получением раствора хлорида кальция или пропускают через абсорбер, заполненный водой, с получением соляной кислоты заданной концентрации.

Пример 4

Хлорсодержащие газы титаномагниевого производства в количестве 1200 нм3/час (в пересчете на 100% хлор) смешивают с 900 нм3/час водяного пара в магистральном трубопроводе хлорсодержащего газа путем врезки отдельного трубопровода для водяного пара. Хлорсодержащие газы и водяной пар смешивают при соотношении хлор : пар = 1,33 и подают в горелку, где сжигают природный газ в количестве 300 нм3/час. Температура в зоне реакции составляет 450°С. При этом в факеле горения топки образуется объемное соотношение смеси водяного пара и природного газа к хлору, равное 1,0. Получают топочные газы с концентрацией хлорида водорода 26,4%. Топочные газы после охлаждения обрабатывают известковым молоком (100-150 г/дм3 СаО) с получением раствора хлорида кальция или пропускают через абсорбер, заполненный водой, с получением соляной кислоты заданной концентрации.

Пример 5

Хлорсодержащие газы титаномагниевого производства в количестве 1200 нм3/час (в пересчете на 100% хлор) смешивают с 1060 нм3/час водяного пара в магистральном трубопроводе хлорсодержащего газа путем врезки отдельного трубопровода для водяного пара. Хлорсодержащие газы и водяной пар смешивают при соотношении хлор : пар = 1,13 и подают в горелку, где сжигают природный газ в количестве 220 нм3/час. Температура в зоне реакции составляет 750°С. При этом в факеле горения топки образуется объемное соотношение смеси водяного пара и природного газа к хлору, равное 1,06. Получают топочные газы с концентрацией хлорида водорода 34,5%. Топочные газы после охлаждения обрабатывают известковым молоком (100-150 г/дм3 СаО) с получением раствора хлорида кальция или пропускают через абсорбер, заполненный водой, с получением соляной кислоты заданной концентрации.

Пример 6

Хлорсодержащие газы титаномагниевого производства в количестве 800 нм3/час (в пересчете на 100% хлор) смешивают с 450 нм3/час водяного пара в магистральном трубопроводе хлорсодержащего газа путем врезки отдельного трубопровода для водяного пара. Хлорсодержащие газы и водяной пар смешивают при соотношении хлор : пар = 1,77 и подают в горелку, где сжигают природный газ в количестве 260 нм3/час. Температура в зоне реакции составляет 750°С. При этом в факеле горения топки образуется объемное соотношение смеси водяного пара и природного газа к хлору, равное 0,88. Получают топочные газы с концентрацией хлорида водорода 17,3%. Топочные газы после охлаждения обрабатывают известковым молоком (100-150 г/дм3 СаО) с получением раствора хлорида кальция или пропускают через абсорбер, заполненный водой, с получением соляной кислоты заданной концентрации.

Пример 7

Хлорсодержащие газы титаномагниевого производства в количестве 800 нм3/час (в пересчете на 100% хлор) смешивают с 700 нм3/час водяного пара в магистральном трубопроводе хлорсодержащего газа путем врезки отдельного трубопровода для водяного пара. Хлорсодержащие газы и водяной пар смешивают при соотношении хлор : пар = 1,14 и подают в горелку, где сжигают природный газ в количестве 150 нм3/час. Температура в зоне реакции составляет 750°С. При этом в факеле горения топки образуется объемное соотношение смеси водяного пара и природного газа к хлору, равное 1,06. Получают топочные газы с концентрацией хлорида водорода 33%. Топочные газы после охлаждения обрабатывают известковым молоком (100-150 г/дм3 СаО) с получением раствора хлорида кальция или пропускают через абсорбер, заполненный водой, с получением соляной кислоты заданной концентрации.

Пример 8

Хлорсодержащие газы титаномагниевого производства в количестве 1200 нм3/час (в пересчете на 100% хлор) смешивают с 500 нм3/час водяного пара в магистральном трубопроводе хлорсодержащего газа путем врезки отдельного трубопровода для водяного пара. Хлорсодержащие газы и водяной пар смешивают при соотношении хлор : пар = 2,4 и подают в горелку, где сжигают природный газ в количестве 500 нм3/час. Температура в зоне реакции составляет 400°С. При этом в факеле горения топки образуется объемное соотношение смеси водяного пара и природного газа к хлору, равное 0,83. Получают топочные газы с концентрацией хлорида водорода 10,5%. Топочные газы после охлаждения обрабатывают известковым молоком (100-150 г/дм3 СаО) с получением раствора хлорида кальция или пропускают через абсорбер, заполненный водой, с получением соляной кислоты заданной концентрации.

Пример 9

Хлорсодержащие газы титаномагниевого производства в количестве 1200 нм3/час (в пересчете на 100% хлор) смешивают с 900 нм3/час водяного пара в магистральном трубопроводе хлорсодержащего газа путем врезки отдельного трубопровода для водяного пара. Хлорсодержащие газы и водяной пар смешивают при соотношении хлор : пар = 1,33 и подают в горелку, где сжигают природный газ в количестве 300 нм3/час. Температура в зоне реакции составляет 400°С. При этом в факеле горения топки образуется объемное соотношение смеси водяного пара и природного газа к хлору, равное 1,0. Получают топочные газы с концентрацией хлорида водорода 18%. Топочные газы после охлаждения обрабатывают известковым молоком (100-150 г/дм3 СаО) с получением раствора хлорида кальция или пропускают через абсорбер, заполненный водой, с получением соляной кислоты заданной концентрации.

Как видно из примеров (4, 5, 7), при увеличении подачи водяного пара за счет уменьшения содержания природного газа происходит увеличение концентрации хлорида водорода в топочных газах. При этом происходит и снижение температуры процесса, что позволяет уменьшить затраты на дорогостоящее оборудование.

Похожие патенты RU2239595C1

название год авторы номер документа
СПОСОБ ОБЕЗВРЕЖИВАНИЯ ХЛОРСОДЕРЖАЩИХ ОТХОДЯЩИХ ГАЗОВ ТИТАНО-МАГНИЕВОГО ПРОИЗВОДСТВА 2003
  • Тетюхин В.В.
  • Шундиков Н.А.
  • Тетерин В.В.
  • Кирьянов С.В.
  • Батенев Б.Е.
  • Рзянкин С.А.
RU2245394C1
СПОСОБ ПЕРЕРАБОТКИ ОТХОДОВ МАГНИЕВОГО ПРОИЗВОДСТВА И УСТАНОВКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2009
  • Гладикова Любовь Анатольевна
  • Тетерин Валерий Владимирович
  • Михайлов Эдуард Федорович
  • Кирьянов Сергей Вениаминович
  • Артеев Андрей Иванович
  • Бездоля Илья Николаевич
RU2400292C1
СПОСОБ КОМПЛЕКСНОЙ ПЕРЕРАБОТКИ ОТХОДОВ ТИТАНО-МАГНИЕВОГО ПРОИЗВОДСТВА 2003
  • Колесников В.А.
  • Кудрявский Ю.П.
  • Романов А.А.
  • Потеха С.И.
  • Сидоров В.А.
  • Рзянкин С.А.
  • Кирьянов С.В.
  • Бездоля И.Н.
RU2230601C1
СПОСОБ ПОДГОТОВКИ КАРНАЛЛИТОВОГО СЫРЬЯ К ПРОЦЕССУ ЭЛЕКТРОЛИТИЧЕСКОГО ПОЛУЧЕНИЯ МАГНИЯ И ХЛОРА 2009
  • Михайлов Эдуард Федорович
  • Тетерин Валерий Владимирович
  • Бездоля Илья Николаевич
  • Кирьянов Сергей Вениаминович
  • Шундиков Николай Александрович
  • Потеха Сергей Иванович
  • Елин Сергей Михайлович
RU2399588C1
СПОСОБ ОБЕЗВРЕЖИВАНИЯ ГИПОХЛОРИТНОГО РАСТВОРА 2000
  • Пенский А.В.
  • Курносенко В.В.
  • Шундиков Н.А.
  • Ельцов Б.И.
RU2172716C1
ПОТОЧНАЯ ЛИНИЯ ДЛЯ ПРОИЗВОДСТВА МАГНИЯ И СПОСОБ ПОЛУЧЕНИЯ МАГНИЯ ИЗ КИСЛОРОДСОДЕРЖАЩЕГО СЫРЬЯ В ЭТОЙ ЛИНИИ 1996
  • Резников И.Л.
  • Абрамова Л.Н.
  • Щеголев В.И.
  • Татакин А.Н.
RU2107113C1
Способ обезвреживания хлора магниевого производства 1988
  • Мальцев Николай Александрович
  • Сабуров Лев Николаевич
  • Щелконогов Анатолий Афанасьевич
  • Каравайный Александр Иванович
  • Коротков Юрий Алексеевич
  • Тетерин Валерий Владимирович
  • Белкин Геннадий Иванович
  • Шундиков Николай Александрович
  • Брагин Василий Александрович
SU1629243A1
СПОСОБ ПОЛУЧЕНИЯ МАГНИЯ И ХЛОРА И ТЕХНОЛОГИЧЕСКАЯ ЛИНИЯ ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2008
  • Кирьянов Сергей Вениаминович
  • Колесников Валерий Афанасьевич
  • Бабин Владимир Семенович
  • Бездоля Илья Николаевич
  • Михайлов Эдуард Федорович
  • Тетерин Валерий Владимирович
RU2389813C1
СПОСОБ ОБЕЗВОЖИВАНИЯ КАРНАЛЛИТОВОГО СЫРЬЯ И УСТАНОВКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2007
  • Тетерин Валерий Владимирович
  • Сизиков Игорь Анатольевич
  • Шундиков Николай Александрович
  • Бездоля Илья Николаевич
  • Кирьянов Сергей Вениаминович
RU2359911C1
СПОСОБ ПЕРЕРАБОТКИ ТВЕРДЫХ ОТХОДОВ В ШЛАКОВОМ РАСПЛАВЕ 2009
RU2451089C2

Реферат патента 2004 года СПОСОБ ПОЛУЧЕНИЯ ХЛОРИДА ВОДОРОДА ИЗ ОТХОДЯЩИХ ХЛОРСОДЕРЖАЩИХ ГАЗОВ ТИТАНОМАГНИЕВОГО ПРОИЗВОДСТВА

Изобретение относится к цветной металлургии, в частности к получению хлорида водорода из отходящих хлорсодержащих газов титаномагниевого производства. Способ заключается в сжигании хлорсодержащего газа в факеле горения углеродно-водородного топлива в присутствии паров воды с получением топочных газов и их охлаждение, при этом предварительно перед подачей в факел горения хлорсодержащие газы и водяной пар смешивают при объемном соотношении (1,1-4,0):1, сжигание хлорсодержащего газа в факеле горения осуществляют без подачи воздуха, а объемное соотношение паров воды и природного газа к хлору в факеле горения поддерживают равным (0,8-1,2):1. Изобретение направлено на повышение содержания хлорида водорода в топочных газах, что позволит получить из них соляную кислоту повышенной концентрации.

Формула изобретения RU 2 239 595 C1

Способ получения хлорида водорода из отходящих хлорсодержащих газов титаномагниевого производства, включающий сжигание хлорсодержащего газа в факеле горения углеродно-водородного топлива в присутствии паров воды с получением топочных газов и их охлаждение, отличающийся тем, что предварительно перед подачей в факел горения хлорсодержащие газы и водяной пар смешивают при объемном соотношении (1,1-4,0):1, сжигание хлорсодержащего газа в факеле горения осуществляют без подачи воздуха, а объемное соотношение паров воды и природного газа к хлору в факеле горения поддерживают равным (0,8-1,2):1.

Документы, цитированные в отчете о поиске Патент 2004 года RU2239595C1

СПОСОБ ПОЛУЧЕНИЯ ХЛОРИСТОГО ВОДОРОДА И ТОПКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1998
  • Безукладников А.Б.
  • Татакин А.Н.
  • Щеголев В.И.
  • Сандлер Г.Ю.
  • Болотова И.Ф.
RU2139237C1
Способ обезвреживания хлора магниевого производства 1988
  • Мальцев Николай Александрович
  • Сабуров Лев Николаевич
  • Щелконогов Анатолий Афанасьевич
  • Каравайный Александр Иванович
  • Коротков Юрий Алексеевич
  • Тетерин Валерий Владимирович
  • Белкин Геннадий Иванович
  • Шундиков Николай Александрович
  • Брагин Василий Александрович
SU1629243A1
Способ получения хлористого водорода и окиси магния из шестиводного хлористого магния 1925
  • Ильинский В.П.
SU7869A1
СПОСОБ ОБЕЗВРЕЖИВАНИЯ ХЛОРСОДЕРЖАЩИХ ГАЗОВ МАГНИЕВОГО ПРОИЗВОДСТВА 1999
  • Ельцов Б.И.
  • Трапезников Ю.Ф.
  • Курносенко В.В.
  • Шундиков Н.А.
  • Кирьянов С.В.
RU2166008C1
СПОСОБ ИЗМЕРЕНИЯ ВЫЛЕТА В УСТРОЙСТВЕ БЕЗОПАСНОСТИ СТРЕЛОВОГО ГРУЗОПОДЪЕМНОГО КРАНА 2004
  • Коровин Владимир Андреевич
  • Коровин Константин Владимирович
RU2271986C2
US 6540973 B1, 01.04.2003
Полимерная композиция для покрытий 1986
  • Медведев Василий Прокофьевич
  • Огрель Адольф Михайлович
  • Лукьяничев Вадим Вадимович
  • Беленький Борис Леонидович
  • Бузук Игорь Иванович
  • Чалдаева Елена Витальевна
SU1467071A1

RU 2 239 595 C1

Авторы

Пенский А.В.

Шундиков Н.А.

Бездоля И.Н.

Даты

2004-11-10Публикация

2003-08-27Подача