ГРАВИТАЦИОННЫЙ ПАРОСИЛОВОЙ СПОСОБ ДОБЫЧИ НЕФТИ Российский патент 2005 года по МПК E21B43/24 

Описание патента на изобретение RU2245999C2

Изобретение относится к нефтедобывающей промышленности и предназначено для транспортировки по трубопроводу газожидкостной смеси продукции скважин нефтяных месторождений.

Известен способ добычи нефти из скважин с напорным и заборным трубопроводами, в которые нефть закачивают с помощью насоса. Авторское свидетельство СССР №1384871, МПК: F 17 D 1/12, 1988 г.

Недостатком способа является низкая производительность, т.к. за время остановки насоса подача продукции скважин в напорный трубопровод не осуществляется.

Известен способ добычи нефти из скважин с напорным и заборным трубопроводами, при котором в напорный трубопровод с помощью компрессора вводят рабочую среду. Газожидкостная смесь позволяет увеличить дальность транспортировки от скважин до конечного пункта сбора продукции, но только для неглубоких и богатых месторождений. Патент Российской Федерации №2029074, МПК: Е 21 В 43/00,1995 г.

Известен гравитационный паросиловой способ добычи нефти из скважин напорным и заборным трубопроводами, при котором по напорному теплоизолированному трубопроводу в нефтеносный слой вводят рабочую среду под давлением и извлекают на поверхность нефть через заборный трубопровод. Патент Российской Федерации №2117756, Е 21 В 43/24, 1998 г. (Прототип).

Недостатком способа является снижение приемистости и темпа нагнетания пара при его закачке в нагнетательные скважины. Это связано с тем, что в период закачки пара отбор жидкости из пласта не ведут, вследствие чего по мере заполнения порового пространства пласта паром увеличивается пластовое давление в районе призабойных зон нагнетательных скважин. Снижение темпа нагнетания пара приводит к снижению темпа прогрева залежи и увеличению сроков его разработки. Другим недостатком известного способа является то, что в период отбора нефти основным процессом является гравитационное истечение нефти, скорость которого низка, а гидродинамическое вытеснение не используется. Это приводит к снижению темпов отбора нефти.

Задачей настоящего изобретения является повышение эффективности разработки месторождения путем увеличения темпов отбора из нее нефти за счет регулирования режимов закачки пара и отбора нефти с учетом изменения термодинамического состояния пласта.

Технический результат изобретения - повышение эффективности использования гравитационного истечения нефти и ее гидродинамического истечения за счет паросилового воздействия на пласт, содержащий высоковязкую нефть.

Технический результат изобретения достигается тем, что в способе добычи нефти из скважин с напорным и заборным трубопроводами, при котором по напорному теплоизолированному трубопроводу в нефтеносный слой вводят рабочую среду под давлением и извлекают на поверхность нефть через заборный трубопровод, в качестве рабочей среды используют легкокипящую жидкость, подают ее по напорному теплоизолированному трубопроводу, с редукционным узлом и форсункой на конце, под давлением, достаточным для диспергирования легкокипящей жидкости на мельчайшие капли и создания пены, возникающей из пузырьков легкокипящей жидкости и нефти из пласта, которую подают в заборный трубопровод, расположенный коаксиально снаружи напорного, и извлекают на поверхность в виде смеси пара легкокипящей жидкости и нефти, смесь сепарируют, собирают нефть, а пар легкокипящей жидкости конденсируют для повторного использования в скважине.

Способ заключается в том, что в скважину по теплоизолированному трубопроводу с редукционным узлом и форсункой на конце подают через форсунку на дно скважины легкокипящую жидкость, например жидкий аммиак или диоксид углерода. Легкокипящую жидкость подают под давлением, достаточным для диспергирования поданной жидкости в форсунке на мельчайшие капли и создания пенящейся смеси из нефти и пузырьков легкокипящей жидкости.

Полученная таким образом пена поднимается вверх по скважине под действием внешнего компрессора, а также давления насыщенных паров кипящей жидкости. Пары жидкости отделяют сепаратором и подают в холодильный агрегат, в котором их переводят в жидкое состояние и повторно возвращают на дно скважины. Количество и рабочее давление жидкости регулируют для оптимизации процесса в конкретных условиях эксплуатации.

Попадая на дно скважины, легкокипящая жидкость, проходя форсунку, разбивается на мельчайшие капли (диспергируется) и испаряется, образуя пузырьковую паронефтяную смесь (пену). Плотность этой пены ρп может снижаться до величины, в 3-10 раз меньшей плотности чистой нефти. Поэтому при давлении пласта, компрессоров и давлении насыщенных паров, равных, например, 10 атм, нефтяная пена поднимается на высоту 300-1000 м. Это обеспечивает ее дальнейшую эвакуацию из скважины.

На чертеже схематично представлен комплекс добычи нефти из скважин. Комплекс добычи нефти содержит заборный трубопровод 1, откачкой насос 2, компрессор 3, холодильный агрегат 4, напорный теплоизолированный трубопровод 5, редукционный узел 6, форсунку 7, сепаратор, 8, соединительный трубопровод 9 и стартовое устройство 10.

Под действием сил гравитации или принудительно повышенном давлении в нефтяном пласте нефть в скважине поднимается до некоторого уровня Н над дном скважины, покрывая форсунку 7. В форсунку 7 через редукционный узел 6 подают по напорному теплоизолированному трубопроводу 5 из холодильного агрегата 4 легкокипящую жидкость. Попадая в форсунку 7, она распыляется, испаряется и, смешиваясь с нефтью, превращается в пену, плотность которой ρп во много раз ниже плотности нефти. Образующаяся пена по закону Архимеда и под действием сил гравитации поднимается по сборному трубопроводу вверх до нового уровня H1, который определяется из соотношения:

H1=H*(1+ρнефтипены).

Нефть из поднявшейся пены выбирается насосом 2, а пар отделяется сепаратором 8 и возвращается по соединительному трубопроводу 9 в холодильный агрегат 4. Запуск всей системы в действие производят стартовым устройством 10.

При использовании аммиака, у которого Ткип=-33°С (240°К) при давлении 1 атм, теплота парообразования r=1500 кДж/кг, во время испарения 1 кг происходит рождение пузырьков объемом 1,73 м3.

При смешении этого объема с 1 м3 нефти образуется пена объемом 2,73 м3 массой 103 кг и плотностью пены ρп=370 кг/ м3.

При избыточном давлении 10 атм пена поднимается до уровня 300 м. Если избыточное давление мало, то дополнительный перепад давления в скважине из-за давления насыщенных паров становится решающим. Для аммиака давление насыщенных паров при температуре +20-+30°С составляет 10-15 атм соответственно. Поэтому высота подъема пены будет определяться именно давлением насыщенных паров.

Для расчета конкретной системы откачки нефти из скважины глубиной 1 км будем считать, что в пене объем пузырьков в 10 раз больше, чем объем нефти. Тогда плотность пены ρп будет в 10 раз меньше плотности нефти ρн. Для определенности возьмем ρн=800 кг/м3, а ρп=80 кг/м3. Если принять давление насыщенных паров аммиака Р=8*105 Па (8 атм), то пена заполнит полностью скважину глубиной 1 км.

Для наглядности удобно принять площадь поперечного сечения скважины S=0,1 м2, а скорость истечения пены из скважины vп=1 м/с. За 1 секунду из скважины будет выходить газ объемом Vг=0,1 м3 и нефть объемом Vн=0,01 м3 или массой Мн=8 кг.

Если принять, что плотность насыщенных паров аммиака при нормальных условиях ρам=0,6 кг/м3, масса вышедшего газа составит величину М=0,06 кг. Для создания непрерывного процесса откачки нефти с производительностью П=8 кг/с необходимо закачивать именно такое количество жидкого аммиака, с помощью холодильного агрегата, то есть 0,06 кг/с. Для конденсации паров необходимо их охладить, отобрав теплоту конденсации в количестве:

Qхол=rамам=1,5 (МДж/кг)*0,06 (кг)=90 (кДж) в секунду,

rам - удельная теплота парообразования аммиака.

Следует отметить, что испарение аммиака в скважине приводит к охлаждению нефти. Однако это охлаждение относительно невелико. Теплоемкость нефти составляет величину 2 кДж/кг*К, соответственно 8 кг нефти передают теплоту аммиаку 16 кДж/К. Поскольку аммиак отбирает от нефти ~ 100 кДж/с, то охлаждение нефти происходит на ΔТ=6°С. Если плотность пены будет в 2-3 раза больше, то ΔT не превышает 3°С. Приведенные оценки носят приблизительный характер. Необходимо учитывать изменение объема и количества пузырьков по глубине скважины из-за изменения гидростатического и газодинамического давлении. В частности, при изменении давления от 1 атм на поверхности слоя нефти до 10 атм на дне скважины (толщина слоя нефти) объем пузырьков уменьшается в 10 раз. Поэтому усредненное значение объема пузырьков по всей толщине слоя составит 0,5-0,6 от максимального значения. В результате этого подъем пены составит не 1000 м, а 500-600 м, при рассмотрении только статического режима без учета появления новых пузырьков, их перемещения и работы сил газодинамического давления паров внутри пузырьков при подъеме.

Кроме того, пласт может давать нефть в количестве больше или меньше 8 кг, которое принято в оценке. Поэтому объем пузырьков и количество подаваемой рабочей среды необходимо менять за счет редуцированной подачи аммиака в скважину.

Второй пример добычи нефти основан на использовании в качестве рабочей жидкости диоксида углерода. Он привлекателен тем, что у СO2 давление насыщенных паров при температуре 20-30°С достигает величины 40-50 атм. Это позволяет добывать особо вязкую нефть с любых глубин. Однако сделанные выше замечания о влиянии гидростатического давления, а также необходимость более глубокого охлаждения рабочей жидкости (Ткип=-76°С) требует расчетов возможности его практического использования для конкретных месторождений.

Наиболее важным моментом является физическая основа способа добычи нефти. Как только пузырек объемом V0 родился в жидкости (нефти), на него действует выталкивающая сила Архимеда:

F=V0*(ρнефтипара)*g, где g - ускорение свободного падения.

Наличие этой силы, вызванной действием силы гравитации, позволяет создать пену по всей глубине скважины. А работа этой силы с учетом работы паров рабочей жидкости при расширении, в конечном итоге, направлена на увеличение разности между давлением окружающих нефтяных пластов и давлением на дне скважины. По закону сообщающихся сосудов нефть постоянно заполняет межтрубное пространство напорного 5 и заборного трубопроводов 1.

Похожие патенты RU2245999C2

название год авторы номер документа
КОМПЛЕКС РАЗРАБОТКИ ЗАЛЕЖЕЙ НЕФТИ 2003
  • Кушин В.В.
  • Петренко С.В.
RU2246000C2
СПОСОБ ДОБЫЧИ НЕФТИ 2008
  • Коротеев Анатолий Сазонович
RU2375559C1
ГРАВИТАЦИОННАЯ ПАРОСИЛОВАЯ ГИДРОЭЛЕКТРОСТАНЦИЯ 2002
  • Кушин В.В.
RU2234618C2
УСТРОЙСТВО ДЛЯ ТЕПЛОВОГО ВОЗДЕЙСТВИЯ НА НЕФТЯНОЙ ПЛАСТ (ВАРИАНТЫ) 2012
  • Коротеев Анатолий Сазонович
  • Свирчук Юрий Семенович
RU2499162C1
Способ извлечения тепловой энергии на нефтяном месторождении 2018
  • Горбатенко Николай Александрович
  • Леканова Тамара Леонардовна
  • Чупров Валентин Тимофеевич
RU2683452C1
СПОСОБ ДОБЫЧИ НЕФТИ 2022
  • Трофимов Петр Петрович
RU2801929C1
СПОСОБ ОБРАБОТКИ ПРИЗАБОЙНЫХ ЗОН ДОБЫВАЮЩИХ СКВАЖИН 2008
  • Гусаков Виктор Николаевич
  • Семеновых Алексей Николаевич
RU2373385C1
СПОСОБ ДИСПЕРГИРОВАНИЯ НАНОКАТАЛИЗАТОРОВ В НЕФТЕНОСНЫЕ ПЛАСТЫ (ВАРИАНТЫ) 2008
  • Лэнгдон Джон И.
  • Уэр Чарльз Х.
RU2475637C2
СПОСОБ ИЗМЕРЕНИЯ РАСХОДА МНОГОФАЗНОГО ПОТОКА И ОПРЕДЕЛЕНИЯ СОДЕРЖАНИЯ В НЕМ МАССЫ УГЛЕВОДОРОДА 2000
  • Позднышев Г.Н.
  • Манырин В.Н.
  • Калугин И.В.
  • Сивакова Т.Г.
RU2186343C1
СПОСОБ РАЗРАБОТКИ МЕСТОРОЖДЕНИЙ ТРУДНОИЗВЛЕКАЕМЫХ УГЛЕВОДОРОДОВ 2020
  • Коломийченко Олег Васильевич
  • Ничипоренко Вячеслав Михайлович
  • Федорченко Анатолий Петрович
  • Чернов Анатолий Александрович
RU2801030C2

Реферат патента 2005 года ГРАВИТАЦИОННЫЙ ПАРОСИЛОВОЙ СПОСОБ ДОБЫЧИ НЕФТИ

Изобретение относится к нефтедобывающей промышленности и предназначено для транспортировки по трубопроводу газожидкостной смеси продукции скважин нефтяных месторождений. Обеспечивает повышение эффективности использования гравитационного истечения нефти за счет паросилового воздействия на пласт, содержащий высоковязкую нефть. Сущность изобретения: в соответствии со способом по напорному теплоизолированному трубопроводу в нефтеносный слой вводят рабочую среду под давлением и извлекают на поверхность нефть через заборный трубопровод. Согласно изобретению в качестве рабочей среды используют легкокипящую жидкость. Ее подают по напорному теплоизолированному трубопроводу с редукционным узлом и форсункой на конце. Легкокипящую жидкость подают под давлением, достаточным для диспергирования легкокипящей жидкости на мельчайшие капли и создания пены из пузырьков легкокипящей жидкости и нефти из пласта. Ее подают в заборный трубопровод, расположенный коаксиально снаружи напорного. Извлекают на поверхность смесь пара легкокипящей жидкости и нефти. Смесь сепарируют, собирают нефть, а пар легкокипящей жидкости конденсируют для повторного использования в скважине. 1 ил.

Формула изобретения RU 2 245 999 C2

Способ добычи нефти из скважин с напорным и заборным трубопроводами, при котором по напорному теплоизолированному трубопроводу в нефтеносный слой вводят рабочую среду под давлением и извлекают на поверхность нефть через заборный трубопровод, отличающийся тем, что в качестве рабочей среды используют легкокипящую жидкость, подают ее по напорному теплоизолированному трубопроводу с редукционным узлом и форсункой на конце под давлением, достаточным для диспергирования легкокипящей жидкости на мельчайшие капли и создания пены из пузырьков легкокипящей жидкости и нефти из пласта, которую подают в заборный трубопровод, расположенный коаксиально снаружи напорного, и извлекают на поверхность в виде смеси пара легкокипящей жидкости и нефти, смесь сепарируют, собирают нефть, а пар легкокипящей жидкости конденсируют для повторного использования в скважине.

Документы, цитированные в отчете о поиске Патент 2005 года RU2245999C2

СПОСОБ ИЗВЛЕЧЕНИЯ ТЯЖЕЛЫХ НЕФТЕЙ 1997
  • Долгий Иван Емельянович
  • Протосеня Анатолий Григорьевич
  • Груцкий Лев Генрихович
  • Пранович Александр Александрович
RU2117756C1
УСТАНОВКА ДЛЯ ТРАНСПОРТИРОВКИ ПРОДУКЦИИ СКВАЖИН 1992
  • Моргаев В.П.
  • Шуралев Л.В.
  • Коннов А.Н.
  • Попов А.А.
RU2029074C1
Система внутрипромыслового сбора и транспортирования продукции нефтяных скважин 1986
  • Моргаев Владимир Павлович
  • Шуралев Леонид Викторович
  • Юсупов Изиль Галимзянович
SU1384871A1
US 4166502 A, 04.09.1979
US 4456065 A, 26.06.1984
US 4558740 A, 17.12.1985.

RU 2 245 999 C2

Авторы

Кушин В.В.

Петренко С.В.

Даты

2005-02-10Публикация

2003-04-08Подача