ИСПАРИТЕЛЬ-КОНДЕНСАТОР Российский патент 2005 года по МПК F28B1/02 

Описание патента на изобретение RU2246671C1

Изобретение относится к теплообменным аппаратам холодильных установок и может быть использовано в качестве воздушно-испарительного конденсатора холодильных машин.

Известен испарительный охладитель, содержащий корпус с поддоном в нижней части с трубами внутри, снабженными поперечными ребрами [1]. Для интенсификации теплообмена ребра выполнены в виде панелей, установлены попарно с заданным шагом вдоль труб с образованием щелевых каналов, присоединенных нижним торцом к поддону.

Верхний торец каналов снабжен пленкообразователем.

Работа охладителя осуществляется следующим образом. Воздух вентилятором подсасывается через окна. Противоточно воздуху из поддона насосом подается вода через щелевые каналы.

Расход воды регулируется таким образом, чтобы обеспечить сплошную пленку необходимой толщины на наружной поверхности каналов без фонтанирования на их верхнем торце струй воды.

Пленка воды, стекающая по наружной поверхности каналов, испаряется при тепломассообмене с воздухом, движущимся противоточно, отбирая при этом тепло от поверхности труб, внутри которых циркулирует охлаждаемая среда.

Недостатком данных охладителей является недостаточная интенсификация тепломасссообмена из-за медленного испарения пленки воды, стекающей по наружной поверхности каналов.

Известно изобретение [2]. Для интенсификации теплообмена охладитель содержит систему перфорированных труб с открытыми концами для прохода свеженасыщенного воздуха, расположенного внутри трубного пучка.

Охладитель содержит корпус с размещенным внутри орошаемым трубным пучком, снабженным оребрением и дополнительной системой перфорированных труб, концы которых имеют отверстия. Вода орошения подается в систему орошения насосом из поддона. Трубный пучок обдувается воздухом, просасываемым вентилятором через окна.

Воздух, поступая из окна, смешивается со свежей порцией его, просасываемой через отверстия системы перфорированных труб, при этом насыщенность воздуха влагой сохраняется на невысоком уровне на протяжении всего пути прохождения по аппарату.

Система перфорированных труб с открытыми концами для прохода свежего насыщенного воздуха позволяет несколько повысить интенсивность теплообмена.

Недостатком данного охладителя является невысокая интенсивность теплообмена, связанная с насыщением воздуха, омывающего межтрубное пространство.

К наиболее близкому прототипу следует отнести испарительный конденсатор [3].

В этом аппарате совмещаются обычный конденсатор и устройство для оборотного охлаждения воды.

В металлическом корпусе монтируют трубчатый змеевик, в котором конденсируется холодильный агент, трубчатый коллектор с форсунками, разбрызгивающими воду, вентилятор, ресивер для поступающего из трубчатого змеевика холодильного агента и отбойник, предотвращающие унос капель воды с воздухом.

Конденсатор снабжен насосом, которым вода из поддона нагнетается к форсункам для орошения змеевика.

Недостатком данного испарительного конденсатора является относительно низкая эффективность, так как коэффициент теплопередачи его не превышает 350-500 ккал/м2·час· ° С.

Существенные проблемы при эксплуатации данного оборудования вызывают отложения на теплообменных поверхностях солей карбоната кальция в виде накипи в комплексе с продуктами биологического происхождения, коррозии и пылью из воздуха. Загрязнение конденсатора приводит к снижению охлаждающей способности теплообменной поверхности за счет увеличения аэродинамического сопротивления проходу воздуха, соответственно уменьшению его расхода.

Солевым отложениям и загрязнению наиболее подвержены конденсаторы с малым шагом оребрения и соответственно с малыми каналами для прохода воды и воздуха.

Задачей изобретения является резкое повышение отбора тепла от поверхности труб, внутри которых циркулирует охлаждаемая среда, снижение расхода воды, сокращение продолжительности процесса и предупреждение загрязнения испарителя.

Задача решается за счет того, что испарительный конденсатор содержит металлический корпус с размещенными в нем трубчатым пучком, оребренными пластинами, форсунками, вентилятором. Согласно изобретению, после форсунок установлен изолировано от корпуса высоковольтный электрод, заряженный со знаком “плюс” и другим концом закрепленный на трубчатом пучке со знаком “минус”. Высоковольтный электрод выполнен в виде металлической сетки, на которой расположены металлические иглы, приваренные к основанию высоковольтного электрода, напротив каждой форсунки.

На фиг.1 изображен воздушно-испарительный конденсатор, общий вид;

на фиг.2 - график зависимости изменения коэффициента теплоотдачи с поверхности трубчатого пучка от скорости охлаждающей среды при поперечном обтекании.

Испарительный конденсатор содержит компрессор 1 холодильной машины, нагнетательный трубопровод 2, трубчатый пучок 3, форсунки 4, высоковольтный электрод 5, блок 6 питания, вентилятор 7, насос 8 контура охлаждения технологической воды, металлический корпус 9. Горячие пары аммиака из компрессора 1 с температурой tTH1 поступают в трубчатый пучок 3, где охлаждаются до температуры tTH2, и смесь пара и жидкости поступает в линейный ресивер. В этой системе контур циркуляции технологической воды является замкнутым и закрытым. С помощью насоса контура охлаждения технологической воды 8 по трубам подается вода к форсункам 4, из которых распыленные частички воды попадают в электростатическое поле (ЭСП).

ЭСП создается высоковольтным электродом 5, который выполнен в виде изолированной от металлического корпуса металлической сетки. Причем напротив каждой форсунки 4 расположены металлические иглы.

ЭСП создает многократное дробление капель, эффективную турбулизацию пленки воды, стекающей по трубам, а также обеспечивает бактерицидную чистоту системы. Частички воды стекают вниз по пластинчатым ребрам, надетым на трубный пучок 3, в виде орошаемой пленки. Стекающая пленка воды отбирает тепло от поверхности труб и часть тепла передает циркулирующему воздуху. В результате температура орошаемой воды на входе и выходе из аппарата поддерживается постоянной.

Воздух, проходящий через испаритель, воспринимает только тепло от пленки воды и его состояние изменяется iB1 до iB2.

Особенность пленки воды, образованной струей капель, состоит в том, что капли непрерывно возмущают пленку, внося в нее жидкую массу. Интенсивность воздействия потока капель на пленку зависит от изменения коэффициента теплоотдачи от теплообменной поверхности при испарительном охлаждении в ЭСП.

Проведенные исследования показали положительные результаты.

На фиг.2 представлены результаты теоретического исследования зависимостей коэффициентов теплоотдачи α от скорости подачи воздуха и различных методов охлаждения. Из фиг.2 видно, что наибольшего значения α достигает при испарительном охлаждении в ЭСП. Это объясняется тем, что ЭСП интенсифицирует процесс охлаждения за счет: ускорения движения капель, дробления крупных капель на более мелкие и равномерного покрытия пучка труб охлаждающей средой по всему объему аппарата.

Таким образом, можно заключить, что увеличение скорости капель за счет их "разгона" в ЭСП и дробление крупных капель на более мелкие приводит к повышению эффективности теплоотдачи. Это и является одной из предпосылок наведения ЭСП между охлаждающей средой и теплообменной поверхностью в воздушно-испарительном конденсаторе.

Расчеты также показали, что коэффициент теплоотдачи наибольшего значения достигает при скорости воздуха V=1,8... 2,2 м/с при напряженности поля Е=20-25 кВ/м.

Литература:

1. Авторское свидетельство СССР №792069, кл. F 28 F 5/00, 1979 г.

2. Авторское свидетельство СССР №937952, кл. F 28 D 5/00, 1982 г.

3. Зайцев В.П. Холодильная техника. - М.: Государственное изд-во торговой литературы, 1962. - С.149-150.

Похожие патенты RU2246671C1

название год авторы номер документа
СПОСОБ ОХЛАЖДЕНИЯ ВАРЕНЫХ КОЛБАСНЫХ ИЗДЕЛИЙ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1999
  • Киреев В.В.
  • Киреев А.В.
RU2196430C2
ВИХРЕВОЙ ИСПАРИТЕЛЬНЫЙ КОНДЕНСАТОР 2001
  • Войтко Андрей Маркович
RU2252376C2
ВЕРТИКАЛЬНЫЙ ВИХРЕВОЙ ИСПАРИТЕЛЬНЫЙ КОНДЕНСАТОР 2003
  • Войтко Андрей Маркович
  • Войтко Дмитрий Андреевич
RU2267727C2
Воздушно-испарительный конденсатор 1985
  • Антоненко Григорий Семенович
  • Дорошенко Александр Викторович
  • Вистяк Владимир Борисович
  • Кивензор Семен Ушерович
  • Гегин Александр Валентинович
SU1305516A1
ПАССИВНЫЙ РАДИАТОР МОДУЛЬНОГО ТИПА 2020
  • Косенко Владимир Сергеевич
RU2750513C1
ИСПАРИТЕЛЬНЫЙ КОНДЕНСАТОР 1999
  • Шляховецкий В.М.
  • Шляховецкий Д.В.
RU2169321C1
ВОДОВОЗДУШНЫЙ УТИЛИЗАТОР ТЕПЛОТЫ 1995
  • Капишников Александр Петрович
RU2122676C1
ТЕПЛОМАССООБМЕННЫЙ АППАРАТ 2013
  • Григорян Леон Гайкович
  • Игнатенков Юрий Иосифович
  • Крючков Дмитрий Александрович
RU2564737C2
КОНДЕНСАТОР 1993
  • Рубцов Ю.А.
  • Куксенко Н.А.
RU2045726C1
ТЕПЛООБМЕННЫЙ АППАРАТ 2003
  • Киреев В.В.
RU2241935C2

Иллюстрации к изобретению RU 2 246 671 C1

Реферат патента 2005 года ИСПАРИТЕЛЬ-КОНДЕНСАТОР

Изобретение относится к теплообменным аппаратам холодильных установок. Испарительный конденсатор содержит металлический корпус с размещенными в нем трубчатым пучком, оребренными пластинами, форсунками, вентилятором. После форсунок установлен изолировано от корпуса высоковольтный электрод, заряженный со знаком “плюс” и другим концом закрепленный на трубчатом пучке со знаком “минус”. Высоковольтный электрод выполнен в виде металлической сетки, на которой расположены металлические иглы, приваренные к основанию высоковольтного электрода, напротив каждой форсунки. Изобретение позволяет повысить отбор тепла от поверхности труб, внутри которых циркулирует охладительная среда, снизить расход воды, сократить продолжительность процесса и предупредить загрязнения испарителя. 1 з.п.ф-лы, 2 ил.

Формула изобретения RU 2 246 671 C1

1. Испарительный конденсатор, содержащий металлический корпус с размещенными в нем трубчатым пучком оребренными пластинами, форсунками, вентилятором, отличающийся тем, что после форсунок установлен изолировано от корпуса высоковольтный электрод, заряженный со знаком “плюс” и другим концом закреплен на трубчатом пучке со знаком “минус”.2. Испарительный конденсатор по п.1, отличающийся тем, что высоковольтный электрод выполнен в виде металлической сетки, на которой расположены металлические иглы, приваренные к основанию высоковольтного электрода напротив каждой форсунки.

Документы, цитированные в отчете о поиске Патент 2005 года RU2246671C1

Испарительный конденсатор 1978
  • Крайтман Яков Давыдович
  • Гоголин Анатолий Аркадьевич
  • Медникова Наталья Матвеевна
  • Лысак Михаил Николаевич
  • Косой Олег Викторович
SU775602A1
Испарительный конденсатор 1973
  • Радионов Владимир Александрович
  • Слободян Николай Захарович
  • Падруль Николай Ефимович
SU459653A1
ИСПАРИТЕЛЬНЫЙ КОНДЕНСАТОР 0
  • А. А. Софер, Н. В. Романовский, Л. А. Савицка Л. И. Никулина
  • А. А. Герасимова
SU251600A1
Конденсатор 1990
  • Чепурненко Виктор Павлович
  • Шевченко Валерий Эдуардович
SU1719859A1
US 4381817 A, 03.05.1983
СПОСОБ ПОЛУЧЕНИЯ ОЛИГОМЕРОВ ПИПЕРИЛЕНА 1997
  • Кирюхин А.М.
  • Пантух Б.И.
  • Сурков В.Д.
RU2135442C1

RU 2 246 671 C1

Авторы

Киреев В.В.

Даты

2005-02-20Публикация

2003-07-14Подача