Настоящее предложение относится к области экспериментальной астрофизики и может быть использовано для обнаружения и распознавания изменяющихся объектов.
Известны методы обнаружения изменяющихся объектов, основанные на использовании наборов двумерных изображений (кадров) - т. наз. “кубов” данных - и последующем исследовании одного или нескольких разностных изображений, взятых выборочно из серии и полученных вблизи некоторых характеристических моментов события (например, максимальной фазы солнечной вспышки, выброса протуберанца) и изображения до и/или после события [1]. Однако при использовании этого способа не регистрируются импульсные объекты, отсутствующие в этих выбранных изображениях, но присутствующие в других изображениях серии. Некоторые исследователи изучают временные профили яркости во многих точках изображения [2]. Однако этот путь недостаточно эффективен, требует значительных затрат труда и времени и не получил широкого распространения. В третьем известном способе проводят сравнительный анализ разностных изображений, полученных вычитанием из каждого последующего кадра предшествующего ему кадра или вычитанием одного кадра из всех прочих [3].
Наиболее близким решением по сущности технической задачи является способ сравнительного анализа разностных кадров [З]. Недостатком этого способа является необходимость анализа практически полного количество изображений (меньше глубины исходного куба всего на единицу), что делает процесс длительным и трудоемким.
Целью предлагаемого решения является уменьшение количества изображений, привлекаемых для анализа, что существенно уменьшает требуемые для обнаружения объекта время и компьютерные ресурсы. Поставленная цель достигается использованием в предлагаемом решении дисперсионной карты.
Предлагаемое решение осуществляют следующим образом.
1. Получают набор последовательных изображений, охватывающий исследуемое событие по длительности.
2. Для построенного куба данных вычисляют и строят дисперсионную карту.
3. По дисперсионной карте выявляют изменяющиеся источники.
Дисперсия (или корень квадратный из дисперсии - среднеквадратичное отклонение) - статистическая характеристика переменности некоторой величины. Применив ее к каждой точке куба данных вдоль его глубины, получают информацию о вариациях яркости каждой точки пространства в данном наборе изображений. Дисперсионную карту σij для куба данных хijk, где i=1,2,...L - номер строки в изображении, j=1,2,...М - номер столбца, k=1,2,...N - номер изображения (“слоя”) в кубе, рассчитывают как
Данная формула соответствует стандартному определению среднеквадратичного отклонения, но удобнее для компьютерных вычислений.
Высокие значения дисперсии на карте относительно среднего значения имеют те точки карты, которые соответствуют источникам переменной яркости. На дисперсионной карте находят точки, значения дисперсии в которых превышают среднюю дисперсию по карте на заданную величину, и по этим точкам идентифицируют изменяющиеся объекты (источники переменной яркости, движущиеся объекты). При этом вклад ярких, но стабильных деталей изображения оказывается меньше вклада непостоянных деталей - флуктуирующих, импульсных, движущихся и т. д. Инструментальный уровень шумов в дисперсионной карте равен шумового уровня в отдельном изображении и может быть отсечен.
Анализ набора изображений может быть выполнен с помощью стандартного вычислительного оборудования, например персонального компьютера. Эффективность предлагаемого способа в сравнении со способом сравнительного анализа разностных кадров [3] определяется тем, что в предлагаемом способе необходим анализ единственного изображения - дисперсионной карты, в то время как способ сравнительного анализа разностных кадров требует анализа N-1 изображений. Например, при исследовании 100 изображений способом сравнительного анализа разностных кадров требуется анализ 99 изображений, тогда как при использовании предлагаемого способа требуется анализ лишь одного изображения - дисперсионной карты, что приводит к соответствующему сокращению времени анализа до 99 раз. Кроме того, известный способ сравнительного анализа разностных кадров теряет свою эффективность, если искомый объект изменяется медленно от кадра к кадру, а в предлагаемом способе на дисперсионной карте он проявится и в этом случае. Этими обстоятельствами определяется как выигрыш в затратах времени исследователя на анализ изображений, так и в требуемых компьютерных ресурсах.
Предлагаемый способ разрабатывался для анализа наборов микроволновых изображений солнечных вспышек, однако он показал свою эффективность и при анализе других наборов данных, в частности, магнитограмм продольной составляющей фотосферного магнитного поля.
Источники информации
1. Kundu M.R., Nitta N., White S.M., Shibasaki K., Enome S., Sakao T., Kosugi T., Sakurai T. Microwave and hard X-ray observations offootpoint emission from solar flares. Astrophysical Journal, 1995, 454, 522-530.
2. Hanaoka Y., Kurokawa H., Enome S., Nakajima H., Shibasaki K., Nishio M., TakanoT., Torii C., Sekiguchi H., Kawashima S., Bushimata T., Shinohara N., Irimajiri Y., Koshiishi H., Shiomi Y., Nakai Y., Funakoshi Y., Kitai R., Ishiura K., Kimura G. Simultaneous observations of a prominence eruption followed by a coronal arcade formation in radio, soft X-rays, and Hα. Publications of Astronomical Society of Japan, 1994, 46, 205-216. Fig.11 (р.213).
3. Lamy P. Observation of the origin of CMEs in the low corona. Astronomy & Astrophysics, 2000, 355, 725-742.
название | год | авторы | номер документа |
---|---|---|---|
УСТРОЙСТВО ОБРАБОТКИ ВИДЕОИНФОРМАЦИИ СИСТЕМЫ ОХРАННОЙ СИГНАЛИЗАЦИИ | 2009 |
|
RU2484531C2 |
СПОСОБ И УСТРОЙСТВО ОБНАРУЖЕНИЯ ДЕФЕКТОВ НА ВИДЕОСИГНАЛАХ | 2013 |
|
RU2535449C2 |
СИСТЕМА И СПОСОБ ДЛЯ ГЕНЕРАЦИИ ИЗОБРАЖЕНИЯ С РАСШИРЕННЫМ ДИНАМИЧЕСКИМ ДИАПАЗОНОМ ИЗ МНОЖЕСТВА ЭКСПОЗИЦИЙ ДВИЖУЩЕЙСЯ СЦЕНЫ | 2004 |
|
RU2335017C2 |
СПОСОБ ОБНАРУЖЕНИЯ И ОПРЕДЕЛЕНИЯ ХАРАКТЕРИСТИК ЦЕЛЕЙ НА ОСНОВЕ РЕГИСТРАЦИИ И ОБРАБОТКИ ХОДА ЛУЧЕЙ ОТ ОБЪЕКТОВ В НАБЛЮДАЕМОМ ПРОСТРАНСТВЕ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ | 2021 |
|
RU2760845C1 |
СПОСОБ И УСТРОЙСТВО ДЕТЕКТИРОВАНИЯ ЛОКАЛЬНЫХ ОСОБЕННОСТЕЙ НА ИЗОБРАЖЕНИИ | 2013 |
|
RU2535184C2 |
СПОСОБ АВТОМАТИЧЕСКОГО КАДРИРОВАНИЯ ФОТОГРАФИЙ | 2006 |
|
RU2329535C2 |
СПОСОБ ОБНАРУЖЕНИЯ ЧЕЛОВЕЧЕСКИХ ОБЪЕКТОВ В ВИДЕО (ВАРИАНТЫ) | 2013 |
|
RU2635066C2 |
СПОСОБ ЗАМЕНЫ ОБЪЕКТОВ В ПОТОКЕ ВИДЕО | 2013 |
|
RU2612378C1 |
ОЦЕНКА ТРЕХМЕРНОЙ ТОПОЛОГИИ ДОРОГИ НА ОСНОВЕ ВИДЕОПОСЛЕДОВАТЕЛЬНОСТЕЙ ПОСРЕДСТВОМ ОТСЛЕЖИВАНИЯ ПЕШЕХОДОВ | 2005 |
|
RU2409854C2 |
СПОСОБ ИДЕНТИФИКАЦИИ КАДРОВ ПОТОКА МУЛЬТИМЕДИЙНЫХ ДАННЫХ НА ОСНОВЕ КОРРЕЛЯЦИОННОГО АНАЛИЗА ГИСТОГРАММ ИЗОБРАЖЕНИЙ КАДРОВ | 2015 |
|
RU2607415C2 |
Изобретение относится к экспериментальной астрофизике. Его использование для обнаружения и распознавания изменяющихся объектов обеспечивает технический результат в виде сокращения потребных временных и компьютерных ресурсов. В способе получают набор последовательных во времени изображений и проводят их анализ. Технический результат достигается благодаря тому, что по полученному набору изображений строят дисперсионную карту, значение в каждой точке которой равно дисперсии значений яркости в соответствующей точке всего набора изображений, на дисперсионной карте находят точки, значения дисперсии в которых превышают среднюю дисперсию по карте на заданную величину, и по этим точкам идентифицируют изменяющиеся объекты.
Способ обнаружения изменяющихся объектов, согласно которому получают набор последовательных во времени изображений и проводят их анализ, отличающийся тем, что по полученному набору изображений строят дисперсионную карту, значение в каждой точке которой равно дисперсии значений яркости в соответствующей точке всего набора изображений, на дисперсионной карте находят точки, значения дисперсии в которых превышают среднюю дисперсию по карте на заданную величину, и по этим точкам идентифицируют изменяющиеся объекты.
Устройство обнаружения и определения координат объекта на изображении | 1990 |
|
SU1737755A1 |
Авторы
Даты
2005-02-20—Публикация
2001-11-29—Подача