УСТРОЙСТВО ДЛЯ СУХОГО РЕЗАНИЯ Российский патент 2005 года по МПК B23Q11/10 

Описание патента на изобретение RU2250158C2

Изобретение относится к устройствам для охлаждения зоны резания металлорежущего станка и может быть использовано в машиностроении.

Известно устройство для охлаждения потока, содержащее управляемый датчик напряжения, подключенный к соплу воздуховода ионизатора.

Недостатками известного устройства является неудобство эксплуатации, обусловленное необходимостью использования автономного источника тока, а также недостаточная эффективность охлаждения и надежность работы устройства.

Целью устройства является повышение эффективности охлаждения, повышение производительности труда в механообработке и снижение загрязненности в рабочей зоне.

Это достигается тем, что устройство, содержащее управляемый датчик напряжения, подключенный к соплу воздуховода ионизатора, регулирует ионизированный газовый поток на выходе из сопла, а в корпусе сопла находится внутренний воздуховод, который служит конденсатором и имеет множество сквозных отверстий, расположенных хаотично вдоль оси воздуховода.

Кроме того, емкость и собственная индуктивность конденсатора выбирается для обеспечения работы сопла в пульсирующем режиме. Процесс пассивации идет значительно быстрее благодаря высокой концентрации озона, кислорода и заряженных частиц различного слоя. Происходит увеличение скорости диффузии электрически заряженных частиц в зону пластической деформации за счет возникновения в струе воздуха значительной (порядка нескольких киловольт) разности потенциалов.

Имеются технические решения для охлаждения воздуха, подаваемого в зону резания по средствам пропускания через высоковольтный разрядный промежуток, например, патент США 3938345 кл. 62-3, 1976 г.

На чертеже схематично показано устройство для охлаждения зоны резания, общий вид.

Устройство для сухого резания (чертеж) состоит из генератора (1), управляемого напряжением, с резистором (2) начальной установки частоты. Согласующий эмиттерный повторитель (3) с резистором (4) подключен к усилителю мощности (5) с импульсным трансформатором (6) диодом защиты (7).

С выхода импульсного трансформатора через резистор (8) на базу мощного транзистора (9) подают импульсы запуска строчного высоковольтного трансформатора (10) с диодом защиты (11) и конденсатором (12) и варистором (13). К выходу высоковольтной обмотки трансформатора (10) подключен высоковольтный высокочастотный диод (14) и балластный резистор (15).

Конденсатор (16) и параллельно ему для защиты варистор (17). Резисторы (18) и (19) выполняют роль шунта в токозадающей цепи. Конденсатором (20) блокируются выбросы высоковольтных импульсов. Последовательно резистору (19) включен ограничивающий резистор (21). Сигнал снимается на входе стабилизатора (22) и отображается на цифровом микроамперметре (25). Блок (22) включает в себя регулируемый стабилизированный блок питания. Одновременно вокруг высоковольтного провода расположен трансформатор тока (23), выход которого подключен к усилителю переменного тока (24) с демодулятором. С выхода демодулятора и усилителя постоянного тока (24) сигнал поступает на вход генератора регулируемого напряжением - на резистор (2).

Кроме того, с выхода резистора (18) включен многооборотный резистор (19) на землю для общего регулирования выходного тока и ионизации. Параллельно резистору (18) включен микроамперметр (25). Регулировка тока для предотвращения самопроизвольной девиации частоты в нагрузке так же, как и амплитуды, осуществляется в цепи трансформатора тока, микроамперметра (25), стабилизатора (22), усилителя (24) и резистора (2) на входе блока (1) преобразователя напряжений - частота.

Сопло формирования ионизационного потока состоит из герметичного корпуса (26) с центральным воздуховодом (27). Конструкция конденсатора состоит из цельного цилиндрического (желательно из фторопласта) конденсатора. Центральный воздуховод (27), который служит конденсатором и имеет множество сквозных отверстий, расположенных хаотично вдоль оси воздуховода. Кроме того, емкость и собственная индуктивность конденсатора выбирается для обеспечения работы сопла в пульсирующем режиме.

Работает приспособление следующим образом.

При подключении напряжения на входе сопла (26) появляется высокое напряжение. Резистором (19) устанавливается нужный ток на приборе (25) после приближения конца сопла к режущей кромке. Также на выходе сопла имеется насадка (28), регулирующая внутренний зазор выходящего потока, для получения ламинарного или турбулентного режима обдува.

В это же время импульсы генератора управляемого напряжения 1 поступают на базу согласующегося эмиттерного повторителя (3), а с его выхода - на вход усилителя мощности (5), подключенного к импульсному трансформатору (6), который в свою очередь питает более мощный транзистор (9), питающий импульсный (строчный) трансформатор (10).

Первичная обмотка трансформатора (10) питается от мощного транзистора, управляемого стабилизатором (22). Параллельно первичной обмотке трансформатора (10) включен защитный диод (11), блокировочный конденсатор (12) и вариатор (13).

На выходной обмотке высоковольтного трансформатора (10), включенной через диод (14) и резистор (15), формируется высокочастотное пульсирующее высокое напряжение. Нижняя обмотка трансформатора (10) заземлена через шунт (18) и конденсатор (20).

Переменный многооборотный резистор (19) включен с нижней (заземленной части по переменному току) на землю через ограничительный резистор (21). Кроме того, часть этого напряжения поступает на вход регулируемого стабилизатора напряжения (22) и цифровой микроамперметр (25).

Трансформатор тока (23) включен непосредственно вокруг высоковольтного провода. С выхода трансформатора тока (23) напряжение усиливается, демодулируется в блоке (24) и подается на вход генератора, управляемого напряжением (1) - входной резистор (2). Высоковольтный провод подключен к одному из выводов ионизирующего конденсатора в корпусе (26). Второй выход конденсатора подключен к воздуховоду (27) и на “землю”. Возможна перемена полярности. Управляемый напряжением генератор (1) с обратной связью, стабилизирует не только частоту на выходном конденсаторе, но и амплитуду.

Воздух, проходя по трубопроводу (27), через конденсатор заряжается озоном. Процесс пассивации идет значительно быстрее благодаря высокой концентрации озона, кислорода и заряженных частиц различного слоя. Происходит увеличение скорости диффузии электрически заряженных частиц в зону пластической деформации за счет возникновения в струе воздуха значительной (порядка нескольких киловольт) разности потенциалов.

Таким образом, продувая конденсатор, заряженными частицами ионов между обкладками конденсатора получаем ионизированный поток на выходе сопла.

Похожие патенты RU2250158C2

название год авторы номер документа
УСТРОЙСТВО ДЛЯ ПОЛУЧЕНИЯ ОЗОНИРОВАННОГО ВОЗДУХА ПРИ РЕЗАНИИ 2004
  • Чекалова Елена Анатольевна
  • Гурин Владимир Дмитриевич
RU2279962C1
УСТРОЙСТВО ПОВЫШЕНИЯ ТЕПЛОПРОВОДНОСТИ ГАЗОВОЙ СРЕДЫ ИОНИЗАЦИЕЙ 1996
  • Трифонов О.Н.
  • Панин М.Г.
RU2115070C1
ВОЗДУШНЫЙ ИОНИЗАТОР 2008
  • Соколов Владимир Феликсович
RU2598098C2
ИОНИЗАТОР ВОЗДУХА 1991
  • Гагуев В.Н.
  • Зуев А.В.
RU2014851C1
ВЫСОКОВОЛЬТНЫЙ ФОРМИРОВАТЕЛЬ ИМПУЛЬСОВ 1991
  • Амосов О.Ф.
  • Смирнов Ю.В.
RU2044402C1
УСТРОЙСТВО ДЛЯ ОХЛАЖДЕНИЯ ИНСТРУМЕНТА 1999
  • Трифонов О.Н.
  • Панин М.Г.
RU2156927C1
Высоковольтный стабилизированный источник питания постоянного тока 1981
  • Несвижский Юрий Борисович
  • Павлов Сергей Васильевич
  • Сахаров Владимир Александрович
SU954977A1
СПОСОБ ИОНИЗАЦИИ ВОЗДУХА И БИПОЛЯРНЫЙ ГЕНЕРАТОР ИОНОВ 2005
  • Реута Виктор Павлович
  • Туктагулов Айдар Фархатович
RU2301377C2
ИСТОЧНИК ПИТАНИЯ НЕЛИНЕЙНОЙ ИЛИ ЛИНЕЙНОЙ НАГРУЗКИ 2021
  • Гутников Анатолий Иванович
  • Крыжко Станислав Михайлович
  • Дубровских Надежда Николаевна
RU2768272C1
УСТРОЙСТВО ДЛЯ ПОЛУЧЕНИЯ ИОНИЗИРОВАННЫХ И ОЗОНИРОВАННЫХ СОТС 2004
  • Наумов Александр Геннадьевич
  • Латышев Владимир Николаевич
  • Минеев Леонтий Иванович
  • Прибылов Александр Николаевич
  • Пименов Иван Николаевич
  • Демьяновский Николай Анатольевич
RU2287419C2

Реферат патента 2005 года УСТРОЙСТВО ДЛЯ СУХОГО РЕЗАНИЯ

Изобретение относится к устройствам для охлаждения зоны резания металлорежущего станка. Устройство содержит управляемый датчик напряжения, подключенный к соплу воздуховода ионизатора. Сопло выполнено с возможностью регулировки выходящего потока, а в корпусе сопла расположен внутренний воздуховод со множеством сквозных отверстий, расположенных хаотично вдоль его оси. Воздуховод служит конденсатором, емкость и собственная индуктивность которого выбраны из условия работы сопла в пульсирующем режиме. Изобретение позволяет повысить эффективность охлаждения и снизить загрязненность рабочей зоны. 1 ил.

Формула изобретения RU 2 250 158 C2

Устройство для обдувки при сухом резании, содержащее управляемый датчик напряжения, подключенный к соплу воздуховода ионизатора, отличающееся тем, что сопло выполнено с возможностью регулировки выходящего потока, а в корпусе сопла расположен внутренний воздуховод со множеством сквозных отверстий, расположенных хаотично вдоль его оси, выполненный в виде конденсатора, емкость и собственная индуктивность которого выбраны из условия работы сопла в пульсирующем режиме.

Документы, цитированные в отчете о поиске Патент 2005 года RU2250158C2

УСТРОЙСТВО ДЛЯ ОХЛАЖДЕНИЯ ЗОНЫ РЕЗАНИЯ 1991
  • Ахметзянов Изяслав Дмитриевич
  • Заман Атик
  • Личутин Вадим Евгеньевич
RU2030276C1
СПОСОБ ОХЛАЖДЕНИЯ ЗОНЫ РЕЗАНИЯ 1998
  • Ахметзянов И.Д.
RU2125929C1
US 6050756 A, 18.04.2000.

RU 2 250 158 C2

Авторы

Чекалова Е.А.

Гурин В.Д.

Даты

2005-04-20Публикация

2002-12-25Подача