СПОСОБ НЕПРЕРЫВНОЙ РЕГИСТРАЦИИ ПОЛОЖЕНИЯ, ПРОФИЛЯ И СКОРОСТИ ДВИЖУЩЕЙСЯ ПОВЕРХНОСТИ Российский патент 2005 года по МПК G01B7/00 G01P3/66 G01H5/00 

Описание патента на изобретение RU2250434C1

Изобретение относится к технике регистрации быстропротекающих однократных процессов (быстрое горение, взрыв, высокоскоростное взаимодействие материалов, распространение ударных волн и т.п.).

Известен способ непрерывной регистрации скорости детонации взрывчатых веществ (см. статью J.Ribovich, W.Watson, F.Gibson “Измерительная аппаратура для изучения чувствительности взрывчатых веществ по отношению к передаче детонации”, опубликованную в журнале “Ракетная техника и космонавтика”, Труды американского института аэронавтики и космонавтики, том 6, №7, июль 1968 г., стр.51-55), в котором используется резистивный датчик вместе со схемой питания датчика постоянным током. Конструктивно резистивный датчик выполнен в виде спирали из длинной, изолированной проволочки с высоким удельным сопротивлением, которая навита на медный изолированный сердечник и защищена снаружи алюминиевой трубкой. С одной стороны датчика алюминиевая трубка, медный сердечник и проволочка соединены между собой, а с другой стороны к проволочке и соединенным вместе сердечнику и трубке подключен источник постоянного тока. Резистивный датчик помещен в жидкое взрывчатое вещество. Под воздействием фронта ударной волны жидкого взрывчатого вещества, алюминиевая трубка в датчике непрерывно замыкается на проволочку, подобно движку проволочного реостата. Регистрируемый сигнал с измерительного тракта пропорционален длине незамкнутой части датчика и он линейно связан с перемещением детонации в той точке исследуемого взрывчатого вещества, где установлен датчик. Скорость детонации на любой момент времени определяется как угол наклона касательной к этому сигналу относительно оси времени (развертки).

Данное решение является наиболее близким по технической сущности к заявляемому способу и взято в качестве прототипа.

Недостатком известного способа является то, что он применим только в мягких средах, имеет недостаточную точность измерения, поскольку используемый в нем резистивный датчик инерционен из-за значительных индуктивности и габаритов.

Решаемой технической задачей предлагаемого изобретения является обеспечение непрерывной регистрации положения, профиля и скорости движущейся металлической поверхности одновременно при высокоскоростном воздействии в пределах 0,8-8 км/с.

Технический результат достигается тем, что при высокоскоростном воздействии на резистивный датчик, включенный в измерительный тракт, регистрируют электрический сигнал, который изменяется пропорционально длине и сопротивлению резистивного датчика, используя калиброванную чувствительность регистратора, определяют положение и скорость высокоскоростного воздействия в любой момент времени регистрации.

Новым является то, что применяют исследуемую поверхность с возможностью ее перемещения от воздействия продуктов взрыва, используют по крайней мере, два резистивных датчика коаксиальной конструкции, которые устанавливают изолированными концами вплотную и перпендикулярно к исследуемой поверхности, а другие концы резистивных датчиков закрепляют неподвижно и подключают их к своим измерительным трактам без образования тока в резистивных датчиках, предварительно измерительные тракты калибруют с целью получения зависимостей их выходных напряжений от эталонных резисторов, осуществляют высокоскоростное воздействие движущейся поверхности на каждый резистивный датчик, используя информационные сигналы с измерительных трактов и калибровочные зависимости, строят графики перемещения отдельных движущихся частей исследуемой поверхности во времени, первые производные от которых характеризуют скорости этих частей, по графикам перемещения определяют в любой фиксированный момент времени регистрации, как положение отдельных частей движущейся поверхности, так и ее профиль в целом.

Устройство, реализующее способ, представлено на чертеже и содержит электродетонатор 1, взрывчатое вещество (ВВ) 2, исследуемую поверхность 3, резистивные датчики коаксиальной конструкции 4, фиксатор датчиков 5, кабельные линии 6, импульсные источники питания 7 и регистраторы информационных сигналов с измерительных трактов 8.

Используемые резистивные датчики коаксиальной конструкции обладают малой инерционностью и поэтому более качественно формируют информационные сигналы 9. Они создают малую зону возмущения при высокоскоростном взаимодействии с движущейся поверхностью, которая соизмерима с внешним диаметром датчика, равном 0,3 мм. Центральная жилка резистивного датчика имеет диаметр 0,05 мм и выполнена из материала с высоким удельным сопротивлением, например нихрома.

Способ реализуется следующим образом.

При задействовании электродетонатора 1 возникает детонация во взрывчатом веществе 2, в результате чего исследуемая поверхность начинает двигаться со скоростью в пределах от 0,8 до 8 км/с и воздействовать на резистивные датчики коаксиальной конструкции 4, которые предварительно устанавливают перпендикулярно к исследуемой поверхности 3, закрепляют их с помощью фиксатора 5 и подключают к кабельным линиям 6. В момент начала высокоскоростного воздействия движущейся поверхности на резистивные датчики 4, в каждом из них, на торце нарушается тонкий слой лаковой изоляции, что приводит к соединению центральной жилки резистивного датчика с его защитной трубкой и таким образом, к включению независимых импульсных источников питания 7. Разрядные токи конденсаторов, проходящие через резистивные датчики и волновые сопротивления, создают информационные сигналы 9, которые поступают на соответствующие регистраторы 8. На информационных сигналах моменты включения резистивных датчиков выражены первыми скачками напряжения и соответствуют началу движения отдельных участков поверхности. При высокоскоростном взаимодействии с движущейся поверхностью резистивные датчики, уменьшают свою длину и сопротивление, что приводит к возрастанию амплитуды информационных сигналов до максимального значения. Результатами обработки информационных сигналов являются X(t) - диаграммы 10, которые характеризуют перемещение отдельных участков движущейся поверхности во времени, и по ним можно легко определить в любой фиксированный момент времени регистрации, как положение отдельных частей движущейся поверхности, так и ее профиль 11, в целом. По профилю 11 наглядно видно систематическое отставание периферийной области движущейся поверхности, по сравнению с центром.

Преимущества применения данного способа это:

- обеспечение одновременной и непрерывной регистрации положения, профиля и скорости движущейся поверхности из твердого материала;

- сокращение диаметра резистивного датчика за счет коаксиальной его конструкции;

- уменьшение зоны возмущения при высокоскоростном взаимодействии с движущейся поверхностью;

- снижение погрешности регистрации всех параметров движущейся поверхности.

При создании устройства, реализующее описываемый способ, были применены:

- в качестве чувствительного элемента резистивного датчика - провод из нихрома в лаковой изоляции типа ПЭВНХ-2 диаметром 0,05 мм;

- в качестве защитной трубки резистивного датчика - трубка из никелевого сплава НП2Э с внешним диаметром 0,3 мм и стенкой 0,1 мм;

- в качестве изолятора в резистивном датчике - лак с шеллаком;

- в качестве кабельной линии - радиочастотный кабель типа РК50-2-16;

- в качестве импульсного источника питания - заряженный до 75 В от стабилизированного источника конденсатор емкостью 100 мкф;

- в качестве регистратора - цифровой осциллограф.

Проведенные экспериментальные исследования показали, что предлагаемый способ обеспечивает непрерывную регистрацию положения, профиля и скорости движущейся поверхности из твердого материала. При высокоскоростном взаимодействии движущейся поверхности с резистивными датчиками в пределах 0,8-8 км/с, погрешности регистрации положения и профиля движущейся поверхности не превысили величину ±0,5 мм, величина скорости определялась с погрешностью от 2 до 10%.

Похожие патенты RU2250434C1

название год авторы номер документа
Способ непрерывной регистрации положения, профиля и скорости неподвижной поверхности пластины, подвергающейся деформации в результате ударно-волнового воздействия 2021
  • Суркаев Анатолий Леонидович
  • Усачёв Василий Иванович
  • Благинин Сергей Иванови
  • Светличная Виктория Борисовна
  • Матвеева Татьяна Александровна
RU2775827C1
УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ ПОЛОЖЕНИЯ В ПРОСТРАНСТВЕ И СКОРОСТИ ДВИЖУЩЕЙСЯ ПЛОСКОЙ ПОВЕРХНОСТИ 2017
  • Тарасов Игорь Борисович
  • Зубанков Алексей Викторович
  • Казаков Алексей Владимирович
  • Кашина Ольга Васильевна
  • Крутикова Елена Владимировна
RU2672808C1
СПОСОБ И УСТРОЙСТВО ИССЛЕДОВАНИЯ ХАРАКТЕРИСТИК ЗАРЯДА ВЗРЫВЧАТОГО ВЕЩЕСТВА И СПОСОБ ИДЕНТИФИКАЦИИ СВОЙСТВ ВЗРЫВЧАТОГО ВЕЩЕСТВА 2015
  • Храмов Игорь Васильевич
  • Михайлюков Константин Леонидович
  • Вахмистров Роман Сергеевич
  • Скобеев Артем Владимирович
  • Шамраев Борис Николаевич
  • Медведев Александр Борисович
  • Сырунин Михаил Анатольевич
  • Карпенко Георгий Яковлевич
  • Комраков Владислав Александрович
  • Храмова Евгения Юрьевна
RU2634249C2
СПОСОБ ОПРЕДЕЛЕНИЯ ПОЛОЖЕНИЯ И СКОРОСТИ ПЛОСКОЙ ПОВЕРХНОСТИ УДАРНИКА 2017
  • Крутикова Елена Владимировна
  • Тарасов Игорь Борисович
RU2657352C1
СПОСОБ СВАРКИ ВЗРЫВОМ 2004
  • Дреннов Олег Борисович
  • Бурцева Ольга Анатольевна
  • Герасименко Валерий Федорович
  • Дреннов Андрей Олегович
  • Пиксайкин Алексей Евгеньевич
RU2270741C1
СПОСОБ ОТРАБОТКИ БОЕПРИПАСА 2010
  • Базаров Юрий Борисович
  • Лобастов Сергей Александрович
  • Осипов Роберт Степанович
  • Цыганов Вячеслав Александрович
RU2448344C1
Способ определения величины пикового давления во фронте подводной ударной волны в ближней зоне взрыва и устройство для его реализации 2021
  • Голенков Александр Иванович
  • Суровцев Роман Павлович
  • Коломиец Юрий Иванович
  • Карпенко Алексей Валентинович
  • Рожков Артем Павлович
  • Косяков Сергей Иванович
  • Коробейников Кирилл Анатольевич
  • Царев Алексей Васильевич
  • Рыжков Дмитрий Геннадьевич
  • Самсонов Сергей Олегович
RU2794866C2
УСТРОЙСТВО ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ ВЗРЫВЧАТОГО ПРЕВРАЩЕНИЯ ВВ ПРИ ТЕРМИЧЕСКИХ ВОЗДЕЙСТВИЯХ 2019
  • Комиссаров Александр Викторович
  • Игнатов Олег Леонидович
  • Краснов Дмитрий Валериянович
RU2724884C1
Устройство для контроля плотности вязких и невязких жидких сред в вертикальных каналах или скважинах при помощи гидростатического контактного плотномера с оптической передачей сигналов и способ контроля плотности 2019
  • Басакина Светлана Сергеевна
  • Комиссаров Павел Владимирович
RU2742022C1
УЧЕБНАЯ ЛАБОРАТОРНАЯ УСТАНОВКА ДЛЯ ИССЛЕДОВАНИЯ ВЗРЫВНЫХ ПРОЦЕССОВ 2008
  • Одинцов Владимир Алексеевич
RU2373489C1

Реферат патента 2005 года СПОСОБ НЕПРЕРЫВНОЙ РЕГИСТРАЦИИ ПОЛОЖЕНИЯ, ПРОФИЛЯ И СКОРОСТИ ДВИЖУЩЕЙСЯ ПОВЕРХНОСТИ

Способ предназначен для исследования однократных быстропротекающих процессов (быстрое горение, взрыв, высокоскоростное взаимодействие материалов, распространение ударных волн и т.п.). Применяют исследуемую поверхность с возможностью ее перемещения от воздействия продуктов взрыва. На исследуемой поверхности устанавливают вплотную и перпендикулярно к ней изолированными концами резистивные датчики коаксиальной конструкции. Другие концы датчиков закрепляют неподвижно и подключают к измерительным трактам без образования тока в датчиках. Осуществляют высокоскоростное воздействие движущейся поверхности на резистивные датчики. Используя информационные сигналы с измерительных трактов и калибровочные зависимости, строят графики перемещения отдельных движущихся частей исследуемой поверхности во времени. Способ позволяет регистрировать одновременно положение, профиль и скорость движущейся твердой поверхности в диапазоне от 0,8 до 8 км/с. 1 ил.

Формула изобретения RU 2 250 434 C1

Способ непрерывной регистрации положения, профиля и скорости движущейся поверхности, заключающийся в том, что при высокоскоростном воздействии на резистивный датчик, включенный в измерительный тракт, регистрируют электрический сигнал, который изменяется пропорционально длине и сопротивлению резистивного датчика, используя калиброванную чувствительность регистратора, определяют положение и скорость высокоскоростного воздействия в любой момент времени регистрации, отличающийся тем, что применяют исследуемую поверхность с возможностью ее перемещения от воздействия продуктов взрыва, используют, по крайней мере, два резистивных датчика коаксиальной конструкции, которые устанавливают изолированными концами вплотную и перпендикулярно исследуемой поверхности, а другие концы резистивных датчиков закрепляют неподвижно и подключают их к своим измерительным трактам без образования тока в резистивных датчиках, предварительно измерительные тракты калибруют с целью получения зависимостей их выходных напряжений от эталонных резисторов, осуществляют высокоскоростное воздействие движущейся поверхности на каждый резистивный датчик, используя информационные сигналы с измерительных трактов и калибровочные зависимости, строят графики перемещения отдельных движущихся частей исследуемой поверхности во времени, первые производные от которых характеризуют скорости этих частей, по графикам перемещения определяют в любой фиксированный момент времени регистрации как положения отдельных частей движущейся поверхности, так и ее профиль в целом.

Документы, цитированные в отчете о поиске Патент 2005 года RU2250434C1

SU 1334879 A1, 27.08.1999
Способ измерения параметров ударной волны 1980
  • Иванов А.Г.
  • Огородников В.А.
SU934792A1
Способ определения скорости распространения фронта ударной волны 1988
  • Степанов Геннадий Владимирович
  • Зубов Виктор Иванович
SU1613875A1
Устройство для сортировки каменного угля 1921
  • Фоняков А.П.
SU61A1
Устройство для крепления абразивных кругов 1978
  • Петухов Юрий Евгеньевич
SU772833A1

RU 2 250 434 C1

Авторы

Ловягин Б.М.

Иванов А.Г.

Дудоладов В.И.

Макаров В.Д.

Даты

2005-04-20Публикация

2003-08-04Подача