СПОСОБ АКТИВИРОВАНИЯ НЕРАСПЫЛЯЕМЫХ ГАЗОПОГЛОТИТЕЛЕЙ ЭЛЕКТРОННО-ЛУЧЕВЫХ ТРУБОК Российский патент 2005 года по МПК H01J9/00 H01J7/18 

Описание патента на изобретение RU2254637C1

Изобретение относится к области электронной техники и может быть использовано в электровакуумном производстве.

Известны способы изготовления электронно-лучевых трубок, при которых после откачки прибора производят активирование газопоглотителя (ГП). Например, известен индукционный способ активирования ГП, когда нагрев ГП осуществляется за счет возбуждения в них токов Фуко (см. Шехмейстер Е.И., Технология производства электровакуумных приборов, М.: «Высшая школа», 1992, с.361 [1]).

В способе по а.с. СССР №1074299, МПК7 H 01 J 9/00, 27.01.1996 [2] активирование нераспыляемого ГП производят после отпайки прибора путем индукционного нагрева со скоростью 40-50 °С/с до температуры 650-750°С. Выбор данного диапазона температуры и скорости нагрева обеспечивает диффундирование с высокой скоростью вглубь кристаллической решетки ГП молекул газов, адсорбированных на его поверхности, и продуктов разложения оксидной пленки. Поверхность ГП освобождается для взаимодействия с остаточной средой.

Недостатками этих способов являются высокая стоимость оборудования, вредность воздействия поля высокой частоты на оператора, сложность переналадки на обработку других типов электровакуумных приборов.

Кроме того, эксплутационные исследования в производственных условиях индукционного нагрева показали, что при визуальном контроле оператором степени нагрева ГП, определяющей качество активирования, часто приходится повторять операцию из-за недостаточного разогрева ГП, вызванного погрешностями установки объекта относительно индуктора, что приводит к существенному уменьшению производительности.

Наиболее близким аналогом заявляемого способа можно считать способ активирования нераспыляемых ГП электронно-лучевых трубок, раскрытый в источнике [1], согласно которому производят их лучевой нагрев. Лучевой нагрев обеспечивает локальность нагрева ГП без опасности перегрева близлежащих деталей, обусловленную возможностью фокусировки и концентрации излучения. Однако при такой общей формулировке не обеспечивается требуемая эффективность нагрева газопоглотителей.

Задачей изобретения является повышение качества электронно-лучевых трубок за счет использования прецизионного инфракрасного нагрева при активировании ГП.

Технический результат изобретения заключается в повышении эффективности активирования газопоглотителей при использовании внешних источников инфракрасного излучения за счет обеспечения оптимального соотношения пропускания ИК излучения через стеклянную оболочку и поглощения его этой оболочкой для ее нагрева.

Указанный технический результат достигается тем, что в способе активирования нераспыляемых ГП электронно-лучевых трубок, включающем их лучевой нагрев при одновременной подаче напряжения накала на катод электронно-лучевой трубки, нагрев ГП осуществляют с помощью инфракрасного излучения, основная часть спектра которого находится в диапазоне длин волн 1,2-4,8 мкм, т.е. в области прозрачности и частичной прозрачности электровакуумных стекол. При этом используют инфракрасное излучение галогенной лампы накаливания. Нагрев титанового ГП осуществляют до температуры 740-750°С со скоростью 395-400 °С/мин и осуществляют выдержку при этой температуре в течение 2-2,5 минут.

Расчетным и экспериментальным путем установлено, что в отличие от инфракрасного нагрева индукционный нагрев более критичен к изменению расстояния между нагревателем и объектом нагрева. В частности следует, что изменение номинального расстояния между нагревателем и ГП на 5 мм приводит к уменьшению температуры ГП на 47°С при индукционном нагреве и на 16°С при инфракрасном нагреве. Расхождение полученных теоретических зависимостей и экспериментальных данных не превышает 15%.

В заявляемом способе при точечном нагреве ГП проникающим инфракрасным излучением (ИК) существенно повышается прецизионность способа нагрева. При этом выбор диапазона длины волн λ=1,2-4,8 мкм обусловлен тем, что проходящая через стекло ЭЛТ часть этого излучения со скоростями 395-400 °С/мин нагревает ГП, а поглощенная часть обеспечивает нагрев стекла без разрушения до температуры 250-300 °С/мин, обеспечивающей снижение теплообмена между ГП и стеклом. При смешении диапазона длин волн влево стекло нагревается незначительно, и нагретый ГП отдает ему часть своего тепла, что приводит к увеличению времени нагрева ГП. При смещении диапазона длин волн вправо стекло меньше пропускает излучение, что также увеличивает время проведения активирования ГП и требует увеличения мощности источника. Кроме того, при этом увеличивается вероятность разрушения стеклооболочек при указанных скоростях нагрева.

Пример конкретного выполнения

По данному способу активирование титановых ГП электронно-лучевых трубок с толщиной δ<2 мм производят следующим образом. ИК нагрев осуществляют галогенной лампой накаливания (ГЛН) типа КГМ 24-250, основная часть спектра (75-80% потока излучения) которой при температуре тела накала Т=2000-2200°С находится в диапазоне длин волн λ=1,2-4,8 мкм. Часть излучения этого диапазона ГЛН проникает через стеклооболочку, осуществляя нагрев ГП. Поглощаемая стеклооболочкой часть излучения указанного диапазона длин волн нагревает ее, уменьшая, тем самым, поток тепловых потерь излучением с ГП на стеклооболочку, что приводит, в свою очередь, к уменьшению времени нагрева. При этом во время нагрева ГП на катод электронно-лучевой трубки подается напряжение накала Uнак=6,3 В. Напряжение накала служит для подогрева катода с целью предотвращения сорбции газов, выделяющихся во время обработки ГП. Нагрев осуществляют со скоростью 395-400 °С/мин до температуры 740-750°С. Затем производят выдержку при данной температуре в течение 2-2,5 мин и отключают нагреватели.

Похожие патенты RU2254637C1

название год авторы номер документа
Способ обезгаживания и активирования газопоглотителя в рентгеновской трубке и катод рентгеновской трубки для его осуществления 2021
  • Малыгин Валерий Дмитриевич
  • Русин Михаил Юрьевич
  • Терехин Александр Васильевич
  • Харитонов Дмитрий Викторович
RU2775545C1
СПОСОБ ИЗГОТОВЛЕНИЯ ЭЛЕКТРОННО-ЛУЧЕВОЙ ТРУБКИ 1991
  • Алексеев С.Н.
  • Коробов М.И.
  • Линник Л.Н.
  • Филатова В.Б.
SU1831185A1
СПОСОБ ИЗГОТОВЛЕНИЯ ВЫСОКОВОЛЬТНОГО ВАКУУМНОГО ГЕРКОНА 2017
  • Орлов Аркадий Валентинович
  • Крютченко Олег Николаевич
  • Иваников Александр Сергеевич
RU2666150C1
Лазерный аппарат для термической обработки нераспыляемых геттеров 2020
  • Лобанов Петр Юрьевич
  • Мануйлович Иван Сергеевич
  • Мешков Михаил Николаевич
  • Сидорюк Олег Евгеньевич
RU2751404C1
ЭЛЕКТРОВАКУУМНЫЙ ПРИБОР 1994
  • Козлов В.П.
  • Шарков Ю.С.
  • Розинский Л.С.
  • Савченков А.Г.
  • Буданова В.Н.
  • Максимов А.Г.
  • Орлянская Е.В.
  • Шарков Д.Е.
  • Коренев А.А.
RU2071618C1
Радиационная печь отжига стеклооболочек электровакуумных приборов 1986
  • Федоров Борис Сергеевич
  • Волчкевич Леонид Иванович
  • Степаньянц Юрий Рубенович
SU1418296A1
МИКРОМИНИАТЮРНЫЙ РЕНТГЕНОВСКИЙ ИЗЛУЧАТЕЛЬ 2018
  • Жуков Николай Дмитриевич
  • Хазанов Александр Анатольевич
  • Мосияш Денис Сергеевич
  • Ягудин Ильдар Тагирович
RU2678326C1
СПОСОБ ЭЛЕКТРОВАКУУМНОЙ ОБРАБОТКИ ЭЛЕКТРОННО-ЛУЧЕВЫХ ТРУБОК 1991
  • Герасимович Михаил Васильевич[Ua]
  • Голубяк Роман Михайлович[Ua]
  • Мацюк Владимир Григорьевич[Ua]
  • Воронич Анатолий Юрьевич[Ua]
RU2024096C1
Способ обработки электронно-лучевой трубки 1982
  • Джодат Ибрагим Нубани
  • Франк Станлей Савики
SU1443820A3
Газопоглотитель 1985
  • Серебренников Виктор Васильевич
  • Козик Владимир Васильевич
  • Яворовский Николай Александрович
  • Ильин Александр Петрович
  • Климентенко Олег Павлович
  • Хвесевич Юрий Георгиевич
  • Токарев Анатолий Трофимович
SU1277249A1

Реферат патента 2005 года СПОСОБ АКТИВИРОВАНИЯ НЕРАСПЫЛЯЕМЫХ ГАЗОПОГЛОТИТЕЛЕЙ ЭЛЕКТРОННО-ЛУЧЕВЫХ ТРУБОК

Изобретение относится к электровакуумной технике, в частности к изготовлению электронно-лучевых трубок. В предложенном способе активирование нераспыляемых газопоглотителей электронно-лучевых трубок производят нагревом инфракрасным излучением в диапазоне длин волн 1,2-4,8 мкм при одновременной подаче напряжения накала на катод трубки. При этом используют инфракрасное излучение галогенной лампы накаливания. Техническим результатом изобретения является повышение качества электронно-лучевых трубок. Нагрев титанового газопоглотителя ведут до температуры 740-750°С, со скоростью 395-400 °С/мин, с выдержкой при этой температуре 2-2,5 минут. 1 з.п. ф-лы.

Формула изобретения RU 2 254 637 C1

1. Способ активирования нераспыляемых газопоглотителей (ГП) электронно-лучевых трубок, включающий их лучевой нагрев при одновременной подаче напряжения накала на катод электронно-лучевой трубки, отличающийся тем, что нагрев ГП осуществляют с помощью инфракрасного излучения галогенной лампы накаливания с диапазоном волн 1,2-4,8 мкм.2. Способ по п.1, отличающийся тем, что нагрев титанового ГП осуществляют до температуры 740-750°С со скоростью 395-400°С/мин и осуществляют выдержку при этой температуре в течение 2-2,5 мин.

Документы, цитированные в отчете о поиске Патент 2005 года RU2254637C1

ШЕХМЕЙСТЕР Е.И
Технология производства электровакуумных приборов, Москва, Высшая школа, 1992, с.361
ЭЛЕКТРОВАКУУМНЫЙ ПРИБОР 1994
  • Козлов В.П.
  • Шарков Ю.С.
  • Розинский Л.С.
  • Савченков А.Г.
  • Буданова В.Н.
  • Максимов А.Г.
  • Орлянская Е.В.
  • Шарков Д.Е.
  • Коренев А.А.
RU2071618C1
СПОСОБ ИЗГОТОВЛЕНИЯ ЭЛЕКТРОННО-ЛУЧЕВОЙ ТРУБКИ 1991
  • Алексеев С.Н.
  • Коробов М.И.
  • Линник Л.Н.
  • Филатова В.Б.
SU1831185A1
Газопоглотитель 1985
  • Серебренников Виктор Васильевич
  • Козик Владимир Васильевич
  • Яворовский Николай Александрович
  • Ильин Александр Петрович
  • Климентенко Олег Павлович
  • Хвесевич Юрий Георгиевич
  • Токарев Анатолий Трофимович
SU1277249A1
JP 5159697 A, 25.06.1993
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. 1921
  • Богач Б.И.
SU3A1

RU 2 254 637 C1

Авторы

Ильин Е.С.

Харексян Р.А.

Максутова Р.А.

Степаньянц Ю.Р.

Бычков С.П.

Даты

2005-06-20Публикация

2003-11-24Подача