СПОСОБ ЭЛЕКТРОМАГНИТНОЙ ОЧИСТКИ И ОБРАБОТКИ ТОПЛИВА Российский патент 2005 года по МПК F02M27/04 F02M31/00 F02M37/22 

Описание патента на изобретение RU2255244C2

Изобретение относятся к двигателестроению и позволяет получить высокую степень очистки топлива и обеспечить его обработку магнитным полем. Это приводит к увеличению скорости и полноты сгорания, а также резкому снижению токсичности отработавших газов с одновременной экономией топлива.

Известен способ омагничивания топлива [1], заключающийся в обработке жидкости постоянным магнитным полем при протекании его через магнитный аппарат.

Недостатком этого способа является невозможность обеспечить высокую эффективность очистки и омагничивания топлива при изменении режимов обработки, что обусловлено использованием постоянных магнитов, т.к. это усложняет подбор необходимой напряженности магнитного поля при реализации способа в каждом конкретном режиме.

Известен циклонный способ очистки топлива [2], который обеспечивает достаточно тонкую очистку топлива.

Основным недостатком этого способа является образование в циклонах воздушного столба - попадание воздуха в систему питания недопустимо.

Наиболее близким техническим решением является способ магнитной обработки жидкостных (водных) систем [3], включающий обработку жидкости постоянным или переменным магнитным полем при протекании жидкости турбулентным потоком через магнитный аппарат с регулируемой напряженностью магнитного поля и ввод распыленного воздуха в аппарат.

Основным недостатком этого способа является невозможность применения его для очистки и обработки топлива, это обусловлено тем, что известный способ предусматривает подачу воздуха в зону обработки жидкости, а свойства воды и топлива значительно отличаются друг от друга. Попадание воздуха в систему питания топлива недопустимо.

Цель изобретения - повышение эффективности магнитной очистки и обработки топлива со снижением затрат путем нарушения структуры топлива и ослабления связи отдельных молекул при взаимодействии с магнитным полем.

Поставленная цель достигается тем, что поток топлива пропускают через электромагнитный аппарат с регулируемой напряженностью магнитного поля, на входе в аппарат топливо подогревают до температуры 300...312 К для снижения вязкости и поверхностного натяжения, придают ему вращательное движение и одновременно воздух отводят из зоны взаимодействия с магнитным полем.

На чертеже представлена одна схема устройства для реализации предлагаемого способа.

Устройство содержит корпус 1, электромагнитную катушку 2, неподвижную аксиальную турбинку 3, фильтрующий элемент 4, воздушную ловушку 5, выполненную в виде селективной жидкостно-газовой мембраны, воздухоотводную трубку 6, выводной тангенциальный патрубок 7, штуцер сброса примесей 8, регулятор напряжённости магнитного поля 9, подогреватель топлива 10.

Подогреватель топлива 10 и аксиальную турбинку 3 устанавливают на входе, а выходной тангенциальный патрубок 7 в широкой части конуса, выполненного в виде усеченного конуса, регулятор напряженности магнитного поля 9 соединен с электромагнитной катушкой 2.

Способ осуществляют следующим образом.

Поток топлива подогревают до температуры 300...312 К в подогревателе 10, подают на лопатки неподвижной турбинки 3 и ему сообщают вращательное движение вдоль стенки фильтрующего элемента 4. По мере этого движения скорость потока падает в 3-4 раза.

Воздух за счет разрежения в воздушной ловушке 5 отводят через воздухоотводную трубку 6, например, к впускному патрубку двигателя. Одновременно на очищаемое топливо воздействует магнитное поле, создаваемое электромагнитной катушкой 2, расположенной на внешней стороне корпуса 1.

Подогрев топлива осуществляют в подогревателе 10 для снижения вязкости, соответственно, затрат на его нагнетание и снижение поверхностного натяжения топлива. Исходя из существующих зависимостей вязкости [4] и поверхностного натяжения [5] от температуры топлива, можно сделать вывод, что его оптимальная температура находится в пределах 300...312 К. При этом обеспечиваются минимальные затраты энергии на его нагнетание. Дальнейшее же повышение температуры нецелесообразно, так как может привести к образованию паровых пробок в системе питания и увеличению энергозатрат на его нагревание. Понижение температуры топлива ниже 300 К способствует увеличению его вязкости и поверхностного натяжения, которые будут вызывать значительное сопротивление его движению (нагнетанию) и распыливанию. Например, затраты на нагнетание топлива зависят от - потерь давления на турбинке 3, где L - длина турбинки, м; dэ - эквивалентный диаметр турбинки 3, м; ρ - плотность топлива, кг/м3; ω - скорость движения топлива, м/с; g =9,81 м/с2 - постоянная Планка; λ - коэффициент потерь на трение; при ламинарном движении, когда Re<2320,1, при турбулентном (2320<Re<105) и при Re>105, λ=(0,0032+0,221·Re-0,237), где - критерий Рейнольдса, v - кинематическая вязкость топлива, м2/с; Q - часовой расход топлива, кг/ч.

Таким образом, при комбинированным воздействии центробежных сил и магнитного поля топливо очищается от магнитных металлических и немагнитных частиц, т.е., частицы, попадая в зону действия магнитного поля, покрываются “заряженными” ионами от вихревых токов, создаваемых магнитным полем, и коагулируют - слипаются, укрупняются и задерживаются в фильтрующем элементе 4, в результате чего общая площадь поверхностей частиц уменьшается.

За счет воздействия вихревых потоков магнитно-силовых линий концентрированного магнитного поля “спиновой” момент электронов на их орбитах и атомов элементов, составляющих топливо, увеличивается. Поэтому энергетические характеристики топлива повышаются, тем самым оно адаптируется к расчетно-эксплуатационным режимам работы как карбюраторных, так и дизельных двигателей.

Использование предлагаемого способа по сравнению с известными обеспечивает повышение эффективности магнитной очистки и обработки топлива на 20...30%.

Источники информации

1. Устройство для тонкой очистки и магнитной модификации топлива двигателя внутреннего сгорания. Патент РФ 2137939, кл. F 02 M 27/04.

2. Высоцкий Л.И., Морозов В.Г. О применении гидроциклонов для очистки рабочих жидкостей гидросистем от механических примесей. В кн.: Гидравлические исследования сооружений. Осветление жидкостей. - Саратов, 1968, вып.29, с.198-201.

3. Способ омагничивания водных систем. Авторское свидетельство SU 1736943 A1, C 02 F 1/48.

4. Николаенко А.В., Хватов В.Н. Повышение эффективности использования тракторных дизелей в сельском хозяйстве. - Л.: Агропромиздат., Ленинградское отделение, 1986, с.61, рис. 13.

5. Чертков Я.Б. Современные и перспективные углеводородные реактивные и дизельные топлива. - М.: Химия, 1968, с.199, рис. 55.

Похожие патенты RU2255244C2

название год авторы номер документа
Способ омагничивания водных систем 1989
  • Карасев Александр Николаевич
  • Журавлев Станислав Георгиевич
SU1736943A1
СПОСОБ НЕЙТРАЛИЗАЦИИ КИСЛОГО ГУДРОНА 2006
  • Филиппова Ольга Павловна
  • Макаров Владимир Михайлович
  • Лузев Виктор Федорович
  • Дубов Андрей Юрьевич
  • Тюрк Анна Михайловна
  • Мурашова Татьяна Николаевна
  • Макаров Михаил Михайлович
RU2320701C1
СПОСОБ ТУШЕНИЯ ПОЖАРА МЕЛКОРАСПЫЛЕННОЙ ВОДОЙ 2011
  • Крысов Павел Васильевич
  • Ефремов Сергей Леонидович
  • Пышный Александр Русланович
  • Сахацкий Сергей Григорьевич
RU2457877C1
СПОСОБ КОМБИНИРОВАННОЙ ОЧИСТКИ ПРИРОДНОГО ГАЗА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2004
  • Скородумов Борис Андреевич
  • Герасимов Владимир Евгеньевич
  • Передельский Вячеслав Алексеевич
  • Дарбинян Роберт Врамшабович
RU2270233C1
СПОСОБ ПОДГОТОВКИ ЖИДКОГО И ГАЗООБРАЗНОГО ТОПЛИВА И УСТРОЙСТВО ДЛЯ ОСУЩЕСТВЛЕНИЯ СПОСОБА 2002
  • Здор Е.А.
  • Сиваков И.Ф.
  • Кочетков Е.Г.
  • Здор А.Е.
  • Филиппов Ф.Н.
RU2224130C2
СПОСОБ СЕПАРИРОВАНИЯ НЕФТИ 2015
  • Копелевич Лев Ефимович
RU2585636C1
СПОСОБ СОЗДАНИЯ КАВИТИРУЮЩИХ СТРУЙ ДЛЯ ОБРАБОТКИ ПОГРУЖЕННЫХ В ЖИДКОСТЬ ПОВЕРХНОСТЕЙ 2003
  • Харламов Анатолий Иванович
  • Мустафин Валерий Борисович
  • Виджаяратхна Бандула
RU2271300C2
СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИТНОЙ ЭМУЛЬСИИ ТОПЛИВА 2016
  • Пятков Владимир Трофимович
  • Иванов Вадим Андреевич
RU2620606C1
Способ получения дизельных топлив с улучшенными низкотемпературными свойствами и уменьшенным содержанием серы и устройство для его реализации 2018
  • Гробов Сергей Владимирович
  • Дудко Анатолий Ильич
  • Киташов Юрий Николаевич
  • Кияница Виталий Иванович
  • Назаров Андрей Владимирович
RU2685550C1
СПОСОБ ОБРАБОТКИ ЖИДКИХ УГЛЕВОДОРОДОВ И УСТАНОВКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2000
  • Крымский В.В.
  • Федотов В.А.
RU2179572C1

Реферат патента 2005 года СПОСОБ ЭЛЕКТРОМАГНИТНОЙ ОЧИСТКИ И ОБРАБОТКИ ТОПЛИВА

Изобретение относится к двигателестроению, в частности, к топливной аппаратуре двигателей внутреннего сгорания и способам обработки топлива. Изобретение позволяет повысить эффективность магнитной очистки и обработки топлива. Способ электромагнитной очистки и обработки топлива, заключающийся в том, что поток топлива пропускают через электромагнитный аппарат с регулируемой напряженностью магнитного поля. На входе в аппарат топливо подогревают до температуры 300...312 К, придают ему вращательное движение в зоне взаимодействия с магнитным полем и отводят одновременно воздух из зоны взаимодействия. 1 ил.

Формула изобретения RU 2 255 244 C2

Способ электромагнитной очистки и обработки топлива, заключающийся в том, что поток топлива пропускают через электромагнитный аппарат с регулируемой напряженностью магнитного поля, отличающийся тем, что на входе в аппарат топливо подогревают до температуры 300-312 К, придают ему вращательное движение в зоне взаимодействия с магнитным полем и отводят одновременно воздух из зоны взаимодействия.

Документы, цитированные в отчете о поиске Патент 2005 года RU2255244C2

Способ омагничивания водных систем 1989
  • Карасев Александр Николаевич
  • Журавлев Станислав Георгиевич
SU1736943A1
СПОСОБ ОБРАБОТКИ ЖИДКИХ УГЛЕВОДОРОДОВ И УСТАНОВКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2000
  • Крымский В.В.
  • Федотов В.А.
RU2179572C1
УСТРОЙСТВО ДЛЯ ТОНКОЙ ОЧИСТКИ И МАГНИТНОЙ МОДИФИКАЦИИ ТОПЛИВА ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ 1999
  • Рыбкин В.Ф.
  • Каримов Р.Х.
  • Пасько В.П.
  • Буторин Л.В.
  • Рыбаков В.В.
RU2137939C1
СПОСОБ ПОДГОТОВКИ ТОПЛИВА К СГОРАНИЮ В ДВИГАТЕЛЕ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1993
  • Морозов Виктор Александрович
  • Ступников Владимир Петрович
  • Щенин Виктор Игоревич
RU2103526C1
RU 2066380 C1, 10.09.1996
УСТРОЙСТВО ДЛЯ ОБРАБОТКИ ЖИДКИХ И/ИЛИ ГАЗООБРАЗНЫХ СРЕД 1995
  • Данилов В.И.
  • Омельяненко М.Н.
  • Ковальчук Я.М.
  • Белоус Ю.Н.
  • Омельяненко М.М.
RU2093699C1
СПОСОБ И УСТРОЙСТВО ПОДГОТОВКИ ТОПЛИВА 2001
  • Гуськов В.П.
  • Давлетшин Р.Х.
  • Дхаван Вивек
  • Лысенков В.А.
RU2200245C1
УСТРОЙСТВО для МАГНИТНОЙ ОБРАБОТКИ ЖИДКОСТИ 0
SU352034A1
МАГНИТНЫЙ АКТИВАТОР ЖИДКИХ ТОПЛИВ 1994
RU2082897C1
DE 3843521 A1, 28.06.1990
ЦИФРОВОЙ ИЗМЕРИТЕЛЬ 0
  • Е. А. Маслов В. М. Дрепин
SU399801A1
US 5664546 A, 28.06.1996.

RU 2 255 244 C2

Авторы

Кожевников А.П.

Аюгин П.Н.

Абрамов А.Е.

Варнаков Д.В.

Даты

2005-06-27Публикация

2003-05-26Подача