Изобретение относится к составам твердосмазочных материалов и может быть использовано для создания и восстановления износостойких поверхностей трения различных узлов и механизмов.
Одним из перспективных направлений повышения износостойкости узлов трения является использование в качестве твердосмазочных материалов и добавок природных минералов и их смесей.
Известна смазка, содержащая каолин, слюду, тальк и соли щелочных металлов высших жирных кислот ([1] - авторское свидетельство СССР No 1366524, кл. С 10 М 125/24, 125/30, 1986). Известно твердосмазочное покрытие, включающее связующее и природную минеральную смесь, включающую большое количество элементов, в том числе магнетит ([2] - патент РФ No 2043393, кл. С 10 М 125/04, 1991). Известен состав для обработки пар трения, включающий помимо серпентина мелкодисперсный порошок алмаза или шунгита и смесь мелкодисперсных порошков металлов([3] - патент РФ No 2168662, кл. С 10 М 125/04, F 16 C 33/14, 2000).
Известен триботехнический состав в виде мелкодисперсной смеси природных минералов, включающей серпентин, магнетит, тальк, кальцит, тремолит, клинохлор и кварц ([4] - патент РФ No 2188227, кл. С 10 М 125/00, 2001).
Наиболее близким по технической сущности к заявляемому является состав в виде смеси природных минералов, содержащий серпентин, железо в изоморфной примеси, алюминий в изоморфной примеси, кремнезем и доломит ([5] - патент РФ No 2169172, кл. С 10 М 125/04,1999).
Недостатком решения [3] является сложный состав и способ приготовления, что влияет на стоимость состава.
К недостаткам решений [2] и [4] относится опасность значительного абразивного изнашивания узлов трения, что связано с наличием большого количества магнетита, имеющего высокую твердость.
Недостатком решения [5] является невозможность его использования для восстановления изношенных поверхностей трения.
Задача изобретения - создание твердосмазочного состава, обеспечивающего низкий коэффициент трения, износостойкость и восстановление поверхностей трения, расширение сырьевой базы твердосмазочных минеральных составов.
Задача достигается тем, что смазочный состав в виде смеси природных минералов, включающий серпентин, дополнительно содержит каолинит, ревдинскит и флюорит, а серпентин используется меланжевый, при следующем соотношении компонентов, мас.%:
Другим отличием является то, что смазочный состав дополнительно содержит эпилам в количестве 1,0-20 мас.% состава.
Использование флюорита для рассматриваемых целей среди известных решений не выявлено.
Не выявлено и такого состава компонентов.
Предлагаемый состав обеспечивает низкий коэффициент трения, что связано с совершенной слоистой структурой серпентина меланжевого, каолинита и ревдинскита. Присутствие флюорита обеспечивает стойкость состава в условиях пиковых нагрузок. В этих случаях флюорит распадается на ионы и происходит взаимодействие атомов фтора с атомами Mg в кристаллической решетке серпентина и ревдинскита. Присутствие эпилама и его сорбция на поверхности частиц минералов и металлических поверхностях трения дополнительно снижает коэффициент трения. Состав, имея высокую агдезию к металлу, заполняет неровности в поверхностях трения и уплотняет зазоры между сопряженными деталями, происходит восстановление поверхностей трения.
Происходит также повышение твердости пар трения, что показала проверка твердосплавным инструментом.
Способы подготовки и применения предлагаемого смазочного состава обычны. Они включают измельчение, рассев по фракциям, смешивание. Дисперсность состава изменяется от 0,4 до 25 мкм, в зависимости от конкретных условий и задач применения.
Для испытания были приготовлены несколько составов:
- состав 1, мас.%: каолинит - 0,5, ревдинскит - 1, флюорит - 1, серпентин меланжевый - остальное;
- состав 2, мас.%: каолинит - 5, ревдинскит - 5, флюорит - 1,5, серпентин меланжевый - остальное;
- состав 3, мас.%: каолинит - 10, ревдинскит - 10, флюорит - 2, серпентин меланжевый - остальное;
- состав 4, мас.%: каолинит - 5, ревдинскит - 5, флюорит - 1,5, серпентин меланжевый - остальное, дополнительно эпилам марки Полизам - 05 в количестве 10 мас.% состава.
Промышленные испытания дали следующие результаты.
Пример 1. Состав 1 использовали для обработки редуктора Ц2У-200×20 на фабрике обогащения Лебединского ГОКа. Замеры производили прибором "Малахит" фирмы "Диамех". Контрольные замеры в опорных узлах быстроходного, среднего и тихоходных валов показали снижение ударно-импульсных характеристик на 85%, а через шесть месяцев эксплуатации показатели улучшились еще на 16%.
Пример 2. Подшипниковый узел электрической машины роторного экскаватора Стойленского ГОКа перегревался, происходил выход консистентной смазки. Для обработки использовали состав 2 дисперсностью 15-25 мкм. Два часа прокрутки в холостом режиме обеспечили работу узла с паспортной температурой.
Пример 3. Двигатель внутреннего сгорания тепловоза ТЭМ-2 ЛГОКа, имевший износ ЦПГ 30% и расход масла 4,88%, обработали составом 3 дисперсностью 5-10 мкм. Проверка через два месяца показала снижение расхода масла до 3,8%, компрессия возросла на 10%.
Пример 4. Двигатель внутреннего сгорания автомобиля "ТАТРА" ЛГОКа, имевший разброс компрессии от 13 до 18 кг/см2 и расход масла 0,5 л на 100 км, обработали составом 2 с дисперсностью 5-15 мкм. Через 1000 км пробега в режиме штатной эксплуатации получили увеличение компрессии до 20 кг/см2 и расход масла 50 г на 100 км.
Пример 5. Исходные характеристики насоса Н-403 бурового станка СБШ 250 Стойленского ГОКа составляли по производительности 10 л/мин и давлению 80 кг/см2. Обработка составом 4 дисперсностью 5-15 мкм позволила получить производительность 32 л/мин и давление 300 кг/см2.
Пример 6. Насос Н-1500 (ЛГОК) с начальной производительностью 190-210 л/мин был обработан составом 4. Через 6 часов обкатки на стенде производительность составила 230-250 л/мин.
Была также доказана эффективность обработки составом ходовых колес мостового крана.
Испытания, проводившиеся на машине трения, показали, что коэффициент трения и износ предлагаемого состава соответствуют показателям прототипа. Однако основное преимущество предлагаемого состава - возможность восстановления изношенных поверхностей трения.
Испытания и примеры использования показывают, что предлагаемый состав обеспечивает низкий коэффициент трения, износостойкость и восстановление поверхностей трения при невысоких затратах.
название | год | авторы | номер документа |
---|---|---|---|
Триботехнический состав | 2022 |
|
RU2784724C1 |
ТВЕРДОСМАЗОЧНАЯ КОМПОЗИЦИЯ | 2014 |
|
RU2553255C1 |
ТРИБОТЕХНИЧЕСКИЙ СОСТАВ ПРОТИВОИЗНОСНЫЙ АНТИФРИКЦИОННЫЙ ВОССТАНАВЛИВАЮЩИЙ | 2015 |
|
RU2599161C1 |
Способ безразборного восстановления изношенных металлических поверхностей и состав для его осуществления | 2019 |
|
RU2721242C1 |
СОСТАВ ДЛЯ ПОВЫШЕНИЯ ИЗНОСОСТОЙКОСТИ УЗЛОВ ТРЕНИЯ | 2002 |
|
RU2246531C2 |
СМАЗОЧНЫЙ СОСТАВ ДЛЯ ОБРАБОТКИ ПАР ТРЕНИЯ | 2006 |
|
RU2302451C1 |
СМАЗОЧНЫЙ СОСТАВ ДЛЯ ОБРАБОТКИ ПАР ТРЕНИЯ | 2006 |
|
RU2302453C1 |
СПОСОБ ФОРМИРОВАНИЯ ПОКРЫТИЯ НА ТРУЩИХСЯ ПОВЕРХНОСТЯХ | 2006 |
|
RU2338776C2 |
СПОСОБ БЕЗРАЗБОРНОГО ВОССТАНОВЛЕНИЯ ТРУЩИХСЯ СОЕДИНЕНИЙ | 1997 |
|
RU2149741C1 |
СОСТАВ ДЛЯ БЕЗРАЗБОРНОГО УЛУЧШЕНИЯ ТРИБОТЕХНИЧЕСКИХ ХАРАКТЕРИСТИК УЗЛОВ ТРЕНИЯ "ГЕОМОДИФИКАТОР ТРЕНИЯ" | 1999 |
|
RU2169172C1 |
Изобретение относится к составам твердосмазочных материалов и может быть использовано для создания и восстановления износостойких поверхностей трения различных узлов и механизмов. Сущность: состав в виде смеси природных минералов включает, мас.%: каолинит 0,5-10, ревдинскит 1-10, флюорит 1-2, серпентин меланжевый - остальное. Состав может дополнительно содержать эпилам в количестве 1,0-20 мас.% состава. Технический результат - снижение коэффициента трения, обеспечение износостойкости и восстановление поверхностей трения при невысоких затратах. 1 з.п.ф-лы.
СОСТАВ ДЛЯ БЕЗРАЗБОРНОГО УЛУЧШЕНИЯ ТРИБОТЕХНИЧЕСКИХ ХАРАКТЕРИСТИК УЗЛОВ ТРЕНИЯ "ГЕОМОДИФИКАТОР ТРЕНИЯ" | 1999 |
|
RU2169172C1 |
Авторы
Даты
2005-09-27—Публикация
2004-08-02—Подача