СЦИНТИЛЛЯТОР ДЛЯ ВИЗУАЛИЗАЦИИ РЕНТГЕНОВСКОГО ИЗЛУЧЕНИЯ Российский патент 2005 года по МПК G01T1/20 

Описание патента на изобретение RU2261459C1

Изобретение относится к области датчиков ионизирующих излучений с высоким пространственным разрешением, чувствительных к пучкам рентгеновского и электронного излучений и применяемых для их визуализации в томографии, микротомографии, радиографии, в системах таможенного контроля, в системах неразрушающего контроля промышленных изделий, а так же при телемеханическом мониторинге промышленных изделий и технологий.

Известен люминофор-сцинтиллятор для визуализации рентгеновского излучения (Rossi M., Casali F., Golovkin S.V., Govorun V.N. Digital radiography using an EBCCD-based imaging device // Appl. Radiation and Isotopes 2000. Vol.53. P.699-709) на основе запоминающих фосфоров BaFBr-Eu, создающих скрытое изображение. Однако визуализация скрытого изображения на известном люминофоре-сцинтилляторе происходит только при дополнительной оптической стимуляции, например, He-Ne лазером, т.е. такой люминофор-сцинтиллятор не позволяет работать в режиме реального времени. Кроме того, он имеет недостаточно высокое пространственное разрешение на уровне нескольких сотен микрон.

Известен сцинтиллятор на основе кристаллов NaI-Tl, работающий в сочетании с фотоэлектронными умножителями (Hell Е., W., Mattern D. The evolution of scintillating medical detectiors // Nucl. Instr. and Meth. 2000. Vol.A454. P.40-48). Однако известный сцинтиллятор не обеспечивает высокого пространственного разрешения, поскольку является сплошным, вследствие чего в нем происходит изотропное рассеяния сцинтилляций и изображение размывается. Кроме того, спектр излучения NaI-Tl (410 нм) плохо согласуется со спектральной чувствительностью PIN-фотодиодов (420-800 нм).

Известен сцинтилляционный экран на основе полистиреновых сцинтиллирующих волокон (D'Ambrosio С., et al. Reflection losses in Polystyrene Fibers, NIM, 1991. Vol.A306. P.549), работающих в сочетании с мультианодными (многоканальными) фотоэлектронными умножителями (Групен К. Детекторы элементарных частиц: Справочное издание. Пер. с англ. Новосибирск: Сибирский хронограф, 1999. 408 с; Salomon M., New Measurements of Scintillating Fibers Coupled to Multianode Photomultipliers). Такой сцинтилляционный экран имеет пространственное разрешение на уровне 20-60 мкм, однако из-за низкого эффективного атомного номера (Zэфф≤6) он обладает очень низкой чувствительностью к рентгеновскому излучению и неэффективен для его визуализации. Кроме того, сцинтилляторы из органических материалов обладают очень низкой термической и радиационной стойкостью.

Известны сцинтиллирующие среды на основе гамма-облученных пленок фторидов LiF, MgF2, BaF2 или CaF2 (или их комбинаций), полученных методом термоваккумного напыления фторидов металлов после гамма-облучения этих пленок заданной дозой, обычно 7 кКл/кг (Войтович А.П., Гончарова О.В. и др. Спектрально-люминесцентные свойства гамма-облученных кристаллов и пленок на основе фторидов // Журн. прикл. спектр, 2003. Т.70, №1. С.116-123). Недостатком известных сцинтилляционных сред является их недостаточно высокое пространственное разрешение, что связано с тем, что центры окраски в пленочных или кристаллических фторидах распределены равномерно по всей зоне облучения. Поскольку пленки при малой толщине обладают еще и волноводными свойствами, то при попадании пучка излучения в какую-либо точку пленки ее сплошная светящаяся поверхность создает сильный фон, ухудшающий пространственное разрешение.

Известен сцинтиллятор на основе кристаллов NaF, облученных синхротронным излучением, в результате чего в них наводятся F2-центры окраски, которые являются центрами свечения красного диапазона. (Иванов В.Ю., Шульгин Б.В., Королева Т.С. / Быстрая люминесценция кристаллов на основе NaF // Межвуз. сб. научн. тр. Проблемы спектроскопии и спектрометрии. Екатеринбург: УГТУ-УПИ, 1999. Вып.2. С.100-102). Максимум полосы свечения F2-центров окраски в NaF приходится на область 650-675 нм, что хорошо согласуется со спектральной чувствительностью не только фотоэлектронных умножителей, но и PIN-фотодиодов. Длительность сцинтилляций известного сцинтиллятора на основе NaF с центрами окраски равна 8 нс при возбуждении импульсами синхротрон-ного излучения длительностью 430 пс. Однако известный сцинтиллятор на основе NaF является сплошным: сцинтилляционный слой занимает всю поверхность облученного кристалла и поэтому обладает невысокой пространственной разрешающей способностью, соответствующей миллиметровому диапазону.

Наиболее близким к заявляемому сцинтиллятору является тонкослойный сцинтиллятор на основе кристаллов (Li,Na)F-U,Me с центрами окраски (Черепанов А.Н., Шульгин Б.В., Иванов В.Ю., Райков Д.В., Нешов Ф.Г., Шлыгин B.C., Pedrini Ch., Королева Т.С., Кидибаев М.М. / Эволюция агрегатных центров свечения кристаллов (Li,Na)F под действием радиации // Межвуз. сб. научн. тр. Проблемы спектроскопии и спектрометрии. Екатеринбург: УГТУ-УПИ, 2003. Вып.12. С.27-38). Такой сцинтиллятор в приповерхностном слое содержит агрегатные центры окраски типа F2, F2+, F3+ и F2-, являющиеся эффективными центрами свечения, и обладает основным максимумом свечения при 650 нм. Однако известный тонкослойный сцинтиллятор не может обеспечить высокого пространственного разрешения из-за того, что имеет сплошной сцинтилляционныи слой.

Предлагаемый сцинтиллятор состоит из приповерхностного сцинтилляционного слоя, представляющего собой сцинтиллятор на основе кристаллов (Li,Na)F в виде дискретных ячеек с размерами от 6 мкм до 200 мкм и выше, оптически разделенных между собой металлической сеткой с размерами, соответствующими размерам ячеек (см. чертеж, а - вид сверху; б - вид сбоку). Металлическая сетка выполняется из радиационно-стойкого материала (например, тантала, циркония, ниобия) и углубляется в кристалл на глубину приповерхностного сцинтилляционного слоя (4-6 мкм) для оптического разделения сцинтилляционных ячеек. Дискретная структура слоя обеспечивает высокое пространственное разрешение, что связано с тем, что свечение одной из сцинтилляционных ячеек не возбуждает свечение соседних. Пространственное разрешение предлагаемого сцинтиллятора составляет единицы-сотни микрон. Визуализация рентгеновского излучения происходит благодаря свечению агрегатных центров окраски типа F2, F2+ F3+ и F2-, с основным максимумом свечения в диапазоне 650 нм, что позволяет применять для считывания изображения PIN-фотодиоды. Длительность сцинтилляций не превышает 8 нс, что обеспечивает работу сцинтиллятора в режиме реального времени.

Дополнительным преимуществом предлагаемого сцинтиллятора является возможность визуализации не только рентгеновского, но и электронного излучения, а также возможность использования сцинтиллятора в качестве чувствительного элемента сцинтилляционных детектирующих устройств.

Похожие патенты RU2261459C1

название год авторы номер документа
СЦИНТИЛЛЯТОР ДЛЯ ВИЗУАЛИЗАЦИИ РЕНТГЕНОВСКОГО ИЗЛУЧЕНИЯ 2003
  • Шульгин Б.В.
  • Черепанов А.Н.
  • Иванов В.Ю.
  • Петров В.Л.
  • Королева Т.С.
  • Кидибаев М.М.
RU2242025C1
СПОСОБ ИЗГОТОВЛЕНИЯ СЦИНТИЛЛЯЦИОННЫХ ЭКРАНОВ ДЛЯ ВИЗУАЛИЗАЦИИ РЕНТГЕНОВСКОГО ИЗЛУЧЕНИЯ 2003
  • Шульгин Б.В.
  • Черепанов А.Н.
  • Иванов В.Ю.
  • Нешов Ф.Г.
  • Ушаков Ю.А.
  • Королева Т.С.
  • Кидибаев М.М.
RU2243573C1
СЦИНТИЛЛЯЦИОННЫЙ ДЕТЕКТОР 2003
  • Шульгин Б.В.
  • Райков Д.В.
  • Иванов В.Ю.
  • Черепанов А.Н.
  • Коссе А.И.
  • Соломонов В.И.
  • Королева Т.С.
  • Кидибаев М.М.
RU2248588C2
СПОСОБ ИЗГОТОВЛЕНИЯ ГЕТЕРОСТРУКТУР 2005
  • Шульгин Борис Владимирович
  • Черепанов Александр Николаевич
  • Королева Татьяна Станиславна
  • Иванов Владимир Юрьевич
  • Нешов Федор Григорьевич
  • Буйлин Павел Иванович
  • Голиков Евгений Георгиевич
  • Джолдошов Базаркул Кошоевич
  • Педрини Кристиан
  • Лебу Кирреддин
RU2282214C1
СПОСОБ ПОЛУЧЕНИЯ СЦИНТИЛЛИРУЮЩЕГО СОСТАВА ДЛЯ РЕГИСТРАЦИИ НЕЙТРИНО 2005
  • Шульгин Борис Владимирович
  • Денисов Геннадий Степанович
  • Вараксина Евгения Николаевна
  • Иванов Владимир Юрьевич
  • Ищенко Алексей Владимирович
  • Королева Татьяна Станиславна
  • Райков Дмитрий Вячеславович
  • Черепанов Александр Николаевич
RU2297648C1
КРИСТАЛЛИЧЕСКИЙ СЦИНТИЛЛЯТОР ЛИЯ-3 2005
  • Жукова Лия Васильевна
  • Шульгин Борис Владимирович
  • Жуков Владислав Васильевич
  • Горкунова Светлана Ивановна
  • Райков Дмитрий Вячеславович
  • Чазов Андрей Игоревич
  • Сергеев Александр Витальевич
RU2284044C1
СВЕТОВОЛОКОННЫЙ СЦИНТИЛЛЯЦИОННЫЙ ДЕТЕКТОР РЕНТГЕНОВСКОГО ИЗЛУЧЕНИЯ 2003
  • Шульгин Б.В.
  • Жукова Л.В.
  • Петров В.Л.
  • Райков Д.В.
  • Черепанов А.Н.
RU2248011C1
СЦИНТИЛЛЯТОР ДЛЯ РЕГИСТРАЦИИ ТЕПЛОВЫХ НЕЙТРОНОВ 2004
  • Шульгин Борис Владимирович
  • Черепанов Александр Николаевич
  • Иванов Владимир Юрьевич
  • Королева Татьяна Станиславна
  • Маркс Станислав Викторович
  • Петров Владимир Леонидович
RU2270463C1
СЦИНТИЛЛЯЦИОННЫЙ ДЕТЕКТОР 2005
  • Шульгин Борис Владимирович
  • Петров Владимир Леонидович
  • Анипко Алла Владимировна
  • Черепанов Александр Николаевич
  • Иванов Владимир Юрьевич
  • Фурмиге Жан-Мари
  • Педрини Кристиан
  • Лебу Кирреддин
  • Дюжарден Кристоф
RU2303798C2
СПОСОБ ОБНАРУЖЕНИЯ НАНОРАЗМЕРНОЙ ФРАКЦИИ КРИСТАЛЛОВ ФТОРИДА НАТРИЯ НА ПОДЛОЖКЕ 2007
  • Шульгин Борис Владимирович
  • Кадушников Радий Михайлович
  • Черепанов Александр Николаевич
  • Упорова Юлия Юрьевна
  • Ищенко Алексей Владимирович
  • Малков Вячеслав Борисович
RU2348923C1

Реферат патента 2005 года СЦИНТИЛЛЯТОР ДЛЯ ВИЗУАЛИЗАЦИИ РЕНТГЕНОВСКОГО ИЗЛУЧЕНИЯ

Использование: для визуализации рентгеновского излучения в томографии, микротомографии, радиографии, в системах таможенного контроля и в системах неразрушающего контроля промышленных изделий. Сущность: в сцинтилляторе кристаллы фторида лития или натрия содержат приповерхностный сцинтилляционный слой, выполненный в виде дискретных сцинтилляционных ячеек с размерами от 6 мкм и выше, оптически разделенных между собой металлической сеткой с размерами, соответствующими размерам ячеек, и расположенной на глубине единиц микрон в кристалле. Технический результат - повышение пространственного разрешения. 1 з.п. ф-лы, 1 ил.

Формула изобретения RU 2 261 459 C1

1. Сцинтиллятор для визуализации рентгеновского излучения на базе кристаллов (Li, Na)F, содержащий приповерхностный сцинтилляционный слой с центрами окраски, отличающийся тем, что сцинтилляционный слой выполнен в виде дискретных сцинтилляционных ячеек размерами от 6 мкм и выше, оптически разделенных между собой металлической сеткой с размерами, соответствующими размерам ячеек, и расположенной на глубине единиц микрон в кристалле.2. Сцинтиллятор для визуализации рентгеновского излучения по п.1, отличающийся тем, что металлическая сетка выполнена из радиационно-стойких материалов, например тантала, циркония, ниобия.

Документы, цитированные в отчете о поиске Патент 2005 года RU2261459C1

ЧЕРЕПАНОВ А.Н
и др
Эволюция агрегатных центров свечения кристаллов (Li, Na)F под действием радиации
Межвуз
сб
научн, тр
Проблемы спектроскопии и спектрометрии
Екатеринбург: УГЛУ-УПИ, 2003, вып.12, с.27-38
УСТРОЙСТВО ДЛЯ РЕГИСТРАЦИИ ИЗОБРАЖЕНИЙ РАСПРЕДЕЛЕНИЯ РАДИОАКТИВНЫХ ПРЕПАРАТОВ 1993
  • Архипов В.К.
  • Марков С.В.
  • Буглак А.Л.
RU2082182C1
Устройство для ввода учебной информации 1982
  • Ермаков Верлен Николаевич
  • Атаев Джаваншир Исмаил Оглы
  • Зиятлы Валид Джавадович
SU1120393A1
US 5712483 A, 27.01.1998
US 5091650 A, 25.02.1992.

RU 2 261 459 C1

Авторы

Черепанов А.Н.

Шульгин Б.В.

Королева Т.С.

Педрини Кристиан

Дюжарден Кристоф

Даты

2005-09-27Публикация

2004-01-29Подача