СПОСОБ НЕРАЗРУШАЮЩЕГО ОПРЕДЕЛЕНИЯ СОДЕРЖАНИЯ ВЛАГИ В ПОДКОРПУСНОМ ОБЪЕМЕ ИНТЕГРАЛЬНЫХ СХЕМ Российский патент 2005 года по МПК H01L21/66 G01R31/18 

Описание патента на изобретение RU2263369C2

Изобретение относится к микроэлектронике, а именно к определению влаги в подкорпусном объеме интегральных схем (ИС). Изобретение может быть использовано для диагностического контроля и отбраковки ИС на этапе серийного производства, а также на входном контроле при производстве радиоаппаратуры.

Общие технические условия на ИС требуют, чтобы внутри корпуса было не более 0,05 объемного процента влаги при 25°С, что соответствует 5000 ppm [1]. Контроль содержания паров воды рекомендуется проводить одним из следующих методов: с помощью масс-спектрометра, с помощью детектора влаги в газе-носителе и путем измерения электрической проводимости откалиброванного элемента, вмонтированного в корпус ИС. Все указанные методы являются дорогостоящими, а первые два - разрушающими. Кроме этого, все методы позволяют контролировать содержание паров воды внутри корпуса ИС только выборочно [1].

Известен способ оценки годности полупроводникового прибора перед окончательной его герметизацией по измерению тока утечки до и после обдува воздухом, пропущенным через барботер для насыщения влагой [2]. Если ток утечки при этом возрос, то прибор бракуется. Недостатком данного способа является необходимость высокотемпературного (не менее 200°С) отжига ИС до герметизации в течение 20...100 ч [3].

Известен также способ контроля надежности ИС по току утечки при критическом значении температуры [4], т.е. при значении температуры, соответствующей точке росы влаги в газе в подкорпусном объеме ИС, усредненной для партии ИС. Недостатком данного способа является усреднение температуры точки росы и тока утечки, поэтому этот способ не может быть использован для определения точки росы при сплошном контроле.

Известен также способ контроля качества и надежности ИС [5], заключающийся в измерении информативного параметра при -20°С. Недостатком этого способа является фиксация температуры контроля информативного параметра, что не позволяет судить о содержании влаги внутри корпуса конкретно для каждой ИС.

Наиболее близким аналогом является способ контроля качества ИС [6], в соответствии с которым ИС охлаждают до температуры -60°С, а затем нагревают до 35°С, а о качестве ИС судят по характеру изменения тока утечки в диапазоне температур 0-35°С. Целью данного способа является отбраковка ИС по качеству, и он не может служить способом для определения содержания влаги в подкорпусном объеме каждой ИС.

Изобретение направлено на создание неразрушающего сплошного контроля содержания влаги в подкорпусном объеме ИС без внесения неконтролируемых дефектов и с использованием простой аппаратуры.

Это достигается тем, что влагочувствительный параметр, т.е. параметр зависящий от состояния поверхности кристалла схемы, например ток утечки, измеряется непрерывно при охлаждении и последующем нагревании, а температура точки росы измеряется дважды (при охлаждении и нагревании), что обеспечивает большую точность измерений. Содержание влаги находят с учетом значения давления газа в подкорпусном объеме при найденной температуре точки росы.

Способ реализуется следующим образом. Контролируемую ИС устанавливают в контактное устройство и помещают в камеру тепла и холода. Температуру в камере снижают от комнатной температуры (20°С) до предельно допустимой минимальной температуры, например -65°С, со скоростью не более 10°С в минуту, а затем с той же скоростью снова повышают до комнатной. В процессе охлаждения и последующего нагревания проводят постоянное измерение влагочувствительного параметра, например тока утечки. Начало роста влагочувствительного параметра при охлаждении ИС соответствует моменту начала конденсации паров воды, т.е. температуре точки росы Тр (фиг.1).

Далее рассчитывают давление Рр в корпусе ИС при температуре точки росы Тр по закону Гей-Люссака:

РргТрг,

где Рг, Tг - давление в корпусе ИС и температура среды при ее герметизации, К.

По номограмме [1] (фиг.2) переводят градусы точки росы Тр для найденного значения давления Рр в концентрацию влаги, выраженную в ppm.

Например, если герметизация ИС проводилась пайкой при температуре 320°С (593 К), а температура точки росы определена равной -25°С (248 К), то давление в корпусе ИС Рр согласно приведенной выше формуле будет равно 0,41·105 Па (при Рг=105 Па) и соответственно по номограмме объемная концентрация паров воды в корпусе будет составлять 1500 ppm.

Предложенный способ был апробирован на ИС типа 1564ИП7 в 14-выводном корпусе, герметизированном сваркой при комнатной температуре. Значение влагочувствительного параметра - тока утечки I0 для трех схем приведены в табл.

Таблица№ ИСЗначение параметра I0, нА при температуре, °С20100-5-10-15-20-25-30-35-40-45-50-55-60-651525354545554755658585154585957595858615957577359565756545455582747670646263745960565859555556555757555454557054535357585556563525454575859606396595858545455555357555760262637961605858575656

Рассчитаем по формуле Гей-Люссака давление атмосферы в корпусе Рр при температуре точки росы для следующих данных:

для ИС №1 температура точки росы -20°С (253 К);

для ИС №2 температура точки росы -20°С (253 К);

для ИС №3 температура точки росы -25°С (248 К);

Рг=101325 Па; Тг=22°С(295 К)

и получим

для ИС №1, 2 Рр=0,89·105 Па;

для ИС №3 Рр=0,85·105 Па.

По данным: температура точки росы и давление Рр - находим объемную концентрацию паров воды по номограмме:

для ИС №1, 2 равна 1800 ppm;

для ИС №3 - 800 ppm.

Источники информации

1. Горлов М.И., Ануфриев Л.П., Николаева Е.В. Контроль содержания паров воды внутри корпусов интегральных схем // Минск: Бестпринт, 2002-96 с.

2. Патент Японии №59-66139, Н 01 L 21/66, 21/205, 1982.

3. Епифанов Г.И., Коваленко А.А., Тверской А.А. Контроль сборочных процессов при производстве микросхем // Электронная промышленность. 1983. №1. С.51-55.

4. А.с. СССР №1596288, G 01 R 31/28, 1990.

5. А.с. СССР №1228052, G 01 R 31/28, 1986.

6. А.с. СССР №1684755, G 01 R 31/28, 1989.

Похожие патенты RU2263369C2

название год авторы номер документа
СПОСОБ КОНТРОЛЯ ИС ПО СОДЕРЖАНИЮ ВЛАГИ В ПОДКОРПУСНОМ ОБЪЕМЕ 2006
  • Горлов Митрофан Иванович
  • Шишкина Наталья Александровна
  • Емельянов Антон Викторович
  • Плебанович Владимир Иванович
RU2330301C1
СПОСОБ ИСПЫТАНИЯ НА КОРРОЗИОННУЮ СТОЙКОСТЬ ИНТЕГРАЛЬНЫХ СХЕМ 2013
  • Горлов Митрофан Иванович
  • Самцов Евгений Павлович
  • Солодуха Виталий Александрович
  • Туркевич Аркадий Степанович
RU2527669C1
СПОСОБ ОТБРАКОВКИ ИНТЕГРАЛЬНЫХ СХЕМ 2001
  • Горлов М.И.
  • Ануфриев Л.П.
  • Николаева Е.В.
RU2217843C2
МИКРОЭЛЕКТРОННЫЙ ДАТЧИК ВЛАЖНОСТИ ПОВЕРХНОСТНО-КОНДЕНСАЦИОННОГО ТИПА 2002
  • Горлов М.И.
  • Андреев А.В.
  • Ануфриев Л.П.
  • Николаева Е.В.
RU2224246C1
Способ контроля качества и надежности микросхем 1984
  • Литвинский Игорь Евгеньевич
  • Прохоренко Владимир Александрович
SU1228052A1
Способ контроля качества микросхем 1989
  • Захаров Юрий Иванович
SU1684755A1
СПОСОБ ОПРЕДЕЛЕНИЯ ВЛАГИ В КОРПУСЕ МИКРОСХЕМЫ 1988
  • Рябинин И.В.
  • Катин В.С.
SU1686969A1
Способ обнаружения влаги в корпусах интегральных схем 1990
  • Воронков Иван Евгеньевич
  • Воеводин Вячеслав Николаевич
SU1839241A1
Способ контроля надежности интегральных микросхем 1988
  • Шершень Александр Николаевич
SU1596288A1
СПОСОБ ОПРЕДЕЛЕНИЯ ВЛАГОСОДЕРЖАНИЯ ГАЗОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2010
  • Иванов Юрий Михайлович
  • Катушкин Владимир Петрович
  • Косенков Борис Владимирович
  • Ураков Виктор Алексеевич
RU2450262C1

Иллюстрации к изобретению RU 2 263 369 C2

Реферат патента 2005 года СПОСОБ НЕРАЗРУШАЮЩЕГО ОПРЕДЕЛЕНИЯ СОДЕРЖАНИЯ ВЛАГИ В ПОДКОРПУСНОМ ОБЪЕМЕ ИНТЕГРАЛЬНЫХ СХЕМ

Использование: в микроэлектронике для диагностического контроля и отбраковки интегральных схем на этапе серийного производства, а также на входном контроле при производстве радиоаппаратуры. Сущность изобретения: способ включает охлаждение интегральной схемы с непрерывным контролем влагочувствительного электрического параметра, т.е. параметра, зависящего от состояния поверхности кристалла схемы, например тока утечки, до -65°С, а затем с прежней скоростью нагрев ее до комнатной температуры также с непрерывным измерением электрического параметра. Начало роста измеряемого параметра соответствует температуре точки росы для подкорпусного газа. Рассчитывается давление газа в корпусе интегральной схемы при температуре точки росы и по номограмме определяется концентрация влаги в подкорпусном объеме газа. Технический результат - создание неразрушающего сплошного контроля содержания влаги в подкорпусном объеме интегральной схемы без внесения неконтролируемых дефектов с использованием простой аппаратуры. 2 ил., 1 табл.

Формула изобретения RU 2 263 369 C2

Способ неразрушающего определения содержания влаги в подкорпусном объеме газа интегральной схемы, в соответствии с которым испытуемую интегральную схему охлаждают от комнатной до предельно допустимой минимальной температуры, например -65°С, со скоростью не более 10°С в минуту, а затем с той же скоростью нагревают до исходной температуры, при этом непрерывно при охлаждении и последующем нагревании измеряют влагочувствительный параметр, например ток утечки, для обеспечения большей точности температуру точки росы определяют дважды при охлаждении и нагревании, рассчитывают давление в корпусе интегральной схемы при температуре точки росы и по номограмме определяют объемную концентрацию паров воды.

Документы, цитированные в отчете о поиске Патент 2005 года RU2263369C2

Способ контроля качества микросхем 1989
  • Захаров Юрий Иванович
SU1684755A1
СПОСОБ ОПРЕДЕЛЕНИЯ ВЛАГИ В КОРПУСЕ МИКРОСХЕМЫ 1988
  • Рябинин И.В.
  • Катин В.С.
SU1686969A1
Способ обнаружения влаги в корпусах интегральных схем 1990
  • Воронков Иван Евгеньевич
  • Воеводин Вячеслав Николаевич
SU1839241A1
Способ определения содержания влаги в герметизированных электронных приборах 1981
  • Берлинер Марк Александрович
  • Спиридонов Владимир Иванович
  • Линник Лев Николаевич
  • Гаванин Вадим Алексеевич
  • Фисенко Лев Константинович
SU1083099A1

RU 2 263 369 C2

Авторы

Горлов М.И.

Андреев А.В.

Ануфриев Л.П.

Золотарева Н.А.

Даты

2005-10-27Публикация

2003-10-27Подача