Изобретение относится к компрессорам газотурбинных двигателей, в том числе наземного применения, полученных путем конверсии авиационных двигателей.
Использование компрессора авиационного двигателя для создания газотурбинной установки наземного применения позволяет резко сократить сроки и стоимость создания такой установки, так как компрессоры современных авиационных двигателей обладают высоким ресурсом и к.п.д. Таким примером может служить создание газоперекачивающей установки ГТУ-12П мощностью 12 МВт на базе компрессора высокого давления современного авиационного двигателя ПС-90А. Однако для газоперекачивающих станций нужны газоперекачивающие установки различной мощности, в том числе и 16 МВт.
Для создания такой установки необходимо либо смоделировать компрессор с установки мощностью 12 МВт, т.е. выполнить все детали с новой геометрией, либо добавить к существующему компрессору спереди еще одну ступень, увеличив таким образом расход воздуха через компрессор и мощность установки до 16 МВт. Однако добавка высоконапорной ступени на входе в компрессор является сложной научно-технической задачей, в том числе из-за появления срывных течений у втулки компрессора.
Известна конструкция компрессора газотурбинного двигателя, проточная часть которого выполнена с постоянным наружным диаметром [1]. Недостатком такой конструкции является ее низкая надежность из-за сложности размещения опоры подшипника на входе в компрессор, так как первые ступени компрессора имеют малый внутренний диаметр втулки.
Наиболее близким к заявляемому по технической сущности является компрессор газотурбинного двигателя, проточная часть которого выполнена с постоянным диаметром втулки [2].
Однако такая конструкция не обеспечивает высокого к.п.д. первых рабочих колес компрессора, особенно высоконапорных, из-за срывных явлений, возникающих в этих ступенях.
Техническая задача, которую решает изобретение, заключается в повышении надежности и запасов газодинамической устойчивости, а также в снижении стоимости создания высоконапорного компрессора за счет унификации и конверсии путем добавления спереди ступеней с максимальным использованием базовых деталей при обеспечении высокого к.п.д.
Сущность изобретения заключается в том, что в компрессоре газотурбинного двигателя, включающем входной направляющий аппарат, рабочие колеса и направляющие аппараты ступеней компрессора, размещенные в проточной части, согласно изобретению рабочее колесо по меньшей мере первой ступени компрессора содержит конусную втулку с увеличивающимся по течению воздуха диаметром, а входной направляющий аппарат и направляющий аппарат по меньшей мере первой ступени компрессора содержит конусные втулки с уменьшающимся по течению воздуха диаметром, при этом D/d=0,9-0,99, D1/d1=1,01-1,1, где
D - диаметр втулки рабочего колеса на его входе;
D1 - диаметр втулки направляющего аппарата на его входе;
d - диаметр втулки рабочего колеса компрессора на его выходе;
d1 - диаметр втулки направляющего аппарата на его выходе,
а углы наклона образующих конусной поверхности втулок к оси компрессора составляют 1-6°.
Первые ступени компрессора выполнены высоконапорными, поэтому для получения высоких к.п.д. и запасов газодинамической устойчивости в проточной части должны отсутствовать срывные явления.
Выполнение втулок направляющих аппаратов и рабочих колес конусными делает проточную часть по внутреннему диаметру зигзагообразной. Втулки рабочих колес первых ступеней компрессора выполняют с увеличивающимся по потоку воздуха диаметром (с поджатием), это позволяет эффективно «поджимать» воздух и предотвращать срыв потока.
В направляющих аппаратах воздух тормозится, и выполнение втулки направляющих аппаратов с уменьшающимся по потоку воздуха диаметром и с малыми углами раскрытия позволяет работать в области, где срывные явления еще отсутствуют.
Зигзагообразная проточная часть для первых ступеней компрессора в среднем остается с постоянным внутренним диаметром, что позволяет сохранить подшипник и окружающие его детали при добавке ступеней на входе в компрессор.
При соотношении диаметров по втулке детали и базового колеса D/d<0,9 могут возникнуть срывные явления в последующем за рабочим колесом направляющем аппарате, при D/d>0,99 могут возникнуть срывные явления по втулке рабочего колеса.
При соотношении диаметров по втулке направляющего аппарата D1/d1<1,01 могут также возникнуть срывные явления по втулке добавленного рабочего колеса, установленного за направляющим аппаратом. В случае, когда D1/d1>1,1, могут возникнуть срывные явления по втулке направляющего аппарата.
При α<1° возможно снижение напорности во втулочных сечениях рабочего колеса и к.п.д. компрессора, а при α>6° - снижение к.п.д. компрессора из-за возникновения срывных явлений по втулке последующего за рабочим колесом направляющего аппарата.
В случае если α1<1°, снижается напорность во втулочных сечениях впереди стоящего рабочего колеса и к.п.д. компрессора, а при α1>6° понижаются запасы газодинамической устойчивости компрессора из-за возникновения срывных явлений по втулочным сечениям направляющих аппаратов.
На чертеже показан продольный разрез компрессора газотурбинного двигателя.
Компрессор 1 газотурбинного двигателя состоит из ротора 2 с рабочими колесами первой 3 и второй 4 ступеней и статора 5 с входным направляющим аппаратом 7 первой ступени. Ротор 2 установлен в подшипнике 8, закрепленном в статоре 5.
Конусные втулки 9 рабочих колес 3 и 4 выполнены с увеличивающимся диаметром по потоку воздуха 10 в проточной части 11 компрессора. Конусные втулки 12 направляющих аппаратов 6 и 7 выполнены с уменьшающимся диаметром по потоку воздуха 10. Угол наклона α и α1 образующих конусных поверхностей втулок 9 к оси компрессора составляет 1-6°.
Работает данное устройство следующим образом.
При работе компрессора 1 воздух 10, протекая по проточной части 11 компрессора 1, поджимается в ступенях компрессора, плавно проходя вдоль поверхностей конусных втулок 9 и 12 без отрыва потока воздуха, и сжимается до заданных параметров.
Одновременно при такой геометрии втулок 9 и 12 рабочих колес 3, 4 и направляющих аппаратов 6, 7 уменьшаются проблемы с размещением подшипника 8 и окружающей его масляной полости, так проточная часть такого компрессора остается для первых ступеней в среднем с постоянным внутренним диаметром (с постоянным диаметром втулок).
Такое конструктивное решение позволяет проводить конверсию авиационных высоконапорных компрессором, в том числе с увеличением степени сжатия и расхода сжимаемого воздуха для наземных газотурбинных установок путем добавки на входе компрессора дополнительных рабочих колес и направляющих аппаратов, что позволяет с минимальными затратами создавать газотурбинные установки различной мощности.
Источники информации
1. С.А.Вьюнов. Конструкция и проектирование авиационных газотурбинных двигателей. М.: Машиностроение, 1981, стр.57, рис.3.7а.
2. С.А.Вьюнов. Конструкция и проектирование авиационных газотурбинных двигателей. М.: Машиностроение, 1981, стр.57, рис.3.7в.
название | год | авторы | номер документа |
---|---|---|---|
ВЫСОКОНАПОРНЫЙ КОМПРЕССОР ГАЗОТУРБИННОГО ДВИГАТЕЛЯ | 2003 |
|
RU2243419C2 |
КОМПРЕССОР ГАЗОТУРБИННОГО ДВИГАТЕЛЯ | 2000 |
|
RU2235915C2 |
ОСЕВОЙ МНОГОСТУПЕНЧАТЫЙ КОМПРЕССОР ГАЗОТУРБИННОГО ДВИГАТЕЛЯ | 2003 |
|
RU2243418C2 |
КОМПРЕССОР ГАЗОТУРБИННОГО ДВИГАТЕЛЯ | 2002 |
|
RU2235908C2 |
СПОСОБ ОБЕСПЕЧЕНИЯ ГАЗОДИНАМИЧЕСКОЙ УСТОЙЧИВОСТИ ОСЕВОГО КОМПРЕССОРА | 2023 |
|
RU2820083C1 |
ГАЗОТУРБИННАЯ УСТАНОВКА | 2000 |
|
RU2179646C2 |
ВЫСОКОНАПОРНЫЙ КОМПРЕССОР ГАЗОТУРБИННОГО ДВИГАТЕЛЯ | 2019 |
|
RU2734668C1 |
ВЫСОКОНАПОРНЫЙ МНОГОСТУПЕНЧАТЫЙ КОМПРЕССОР ГАЗОТУРБИННОГО ДВИГАТЕЛЯ | 2005 |
|
RU2317447C2 |
СПОСОБ И УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ ХАРАКТЕРИСТИК И ГРАНИЦЫ УСТОЙЧИВОЙ РАБОТЫ СТУПЕНИ ОСЕВОГО КОМПРЕССОРА В СОСТАВЕ ГТД | 2013 |
|
RU2549276C1 |
СТУПЕНЬ ОСЕВОГО КОМПРЕССОРА | 2007 |
|
RU2347110C1 |
Изобретение относится к компрессорам газотурбинных двигателей, в том числе наземного применения, полученных путем конверсии авиационных двигателей, и позволяет повысить надежность и запасы газодинамической устойчивости, а также снизить стоимость создания высоконапорного компрессора за счет унификации и конверсии путем добавления спереди ступеней с максимальным использованием базовых деталей при обеспечении высокого к.п.д. В компрессоре газотурбинного двигателя, включающем входной направляющий аппарат, рабочие колеса и направляющие аппараты ступеней компрессора, размещенные в проточной части, согласно изобретению рабочее колесо по меньшей мере первой ступени компрессора содержит конусную втулку с увеличивающимся по течению воздуха диаметром, а входной направляющий аппарат и направляющий аппарат по меньшей мере первой ступени компрессора содержат конусные втулки с уменьшающимся по течению воздуха диаметром, при этом D/d=0,9-0,99, D1/d1=1,01-1,1, где D - диаметр втулки рабочего колеса на его входе; D1 - диаметр втулки направляющего аппарата на его входе; d - диаметр втулки рабочего колеса компрессора на его выходе; d1 - диаметр втулки направляющего аппарата на его выходе, а углы наклона образующих конусной поверхности втулок к оси компрессора составляют 1-6°. 1 ил.
Компрессор газотурбинного двигателя, включающий входной направляющий аппарат, рабочие колеса и направляющие аппараты ступеней компрессора, размещенные в проточной части, отличающийся тем, что рабочее колесо, по меньшей мере, первой ступени компрессора содержит конусную втулку с увеличивающимся по течению воздуха диаметром, а входной направляющий аппарат и направляющий аппарат, по меньшей мере, первой ступени компрессора содержат конусные втулки с уменьшающимся по течению воздуха диаметром, при этом D/d=0,9-0,99, D1/d1=1,01-1,1, где D - диаметр втулки рабочего колеса на его входе; D1 - диаметр втулки направляющего аппарата на его входе; d - диаметр втулки рабочего колеса компрессора на его выходе; d1 - диаметр втулки направляющего аппарата на его выходе, а углы наклона образующих конусной поверхности втулок к оси компрессора составляют 1-6°.
С.А.ВЬЮНОВ | |||
Конструкция и проектирование авиационных газотурбинных двигателей, Москва, Машиностроение, 1981, с.57, рис.3,7в | |||
ТАМ ЖЕ, с.57, рис.3.7а | |||
СПОСОБ ЛЕЧЕНИЯ ЦИРРОЗА ПЕЧЕНИ | 2005 |
|
RU2283060C1 |
US 5215433 A, 01.06.1993 | |||
РЫЧАЖНАЯ ВЫДАЧНАЯ КРЫШКА С СИСТЕМОЙ ПРЕДОТВРАЩЕНИЯ СРАБАТЫВАНИЯ, ИСПОЛЬЗУЮЩЕЙ ПОСТОЯННУЮ ДЕФОРМАЦИЮ | 2004 |
|
RU2316458C2 |
DE 3511769 А1, 02.10.1986. |
Авторы
Даты
2005-11-10—Публикация
2004-02-02—Подача