СПОСОБ ПОЛУЧЕНИЯ ВЫСОКООБОГАЩЕННОГО ИЗОТОПА КРЕМНИЙ-28 Российский патент 2005 года по МПК B01D59/20 B01D59/00 

Описание патента на изобретение RU2265476C2

Изобретение относится к области разделения изотопов центробежным способом и может быть использовано при производстве высокообогащенного изотопа кремний-28 на разделительных каскадах при использовании трихлорсилана (SiHCl3) в качестве рабочего вещества.

Известен способ получения высокообогащенных (более 99%) изотопов кремния центробежным способом с использованием в качестве рабочего соединения тетрафторида кремния (SiF4) [1]. Возможно также использование для этой цели трихлорсилана (см. патент RU №2172642 кл. В 01 J 59/20, 2001, 5 с.). Так как одной из общепринятых технологий получения монокристаллического кремния полупроводникового качества является хлорсилановая схема, в настоящее время представляет интерес получение высокообогащенного изотопа кремний-28 в виде трихлорсилана.

Одной из проблем при производстве высокообогащенного изотопа кремний-28 центробежным способом при использовании трихлорсилана в качестве рабочего вещества является наличие так называемых изотопных перекрытий, обусловленных полиизотопией элементов, входящих в состав молекул рабочего вещества SiHCl3. Изотопное перекрытие в данном случае обусловлено наличием в молекуле трихлорсилана, кроме изотопов кремния-28; 29; 30, изотопов хлора-35; 37 (полиизотопией водорода можно пренебречь ввиду незначительного распространения двух его изотопов - дейтерия, трития).

Вследствие данного явления целевой изотоп кремний-28 может одновременно находиться в составе молекул с различными массами. В табл.1 представлено распределение молекул трихлорсилана природного изотопного состава по массам и равновероятное распределение изотопа кремний-28 по массовым компонентам.

Таблица 1
Распределение молекул трихлорсилана природного изотопного состава по массам и равновероятное распределение изотопа кремний-28 по массовым компонентам
Молекулярная массаРаспределение молекул трихлорсилана природного изотопного состава по массовым компонентамРавновероятное распределение изотопа кремний-28 в соответствующей компонентеа.е.м.%13439.721001352.03013639.9496.671371.97013813.8190.631390.6401401.7776.321410.0701420.050

Получение высокообогащенного более 99,9% изотопа кремний-28 возможно накоплением молекул с массой 134 а.е.м. со 100% содержанием целевого изотопа в «легкой» товарной фракции каскада. При этом теоретически степень извлечения его будет составлять не более 43.1%, а практически еще более низкую величину. Таким образом, использование трихлорсилана для центробежного способа, вследствие изотопного перекрытия, предполагает довольно невысокую степень извлечения целевого изотопа из исходного сырья, что удорожает себестоимость данного изотопа. Это является недостатком данного способа.

Известно, что при разделении сложных многокомпонентных смесей первоначально химически равновесных, в нашем случае трихлорсилана, молекулярный состав легкой и тяжелой фракций ступеней по длине каскада постепенно отклоняется от состава, соответствующего равновероятному распределению изотопов кремния и хлора по массовым компонентам трихлорсилана, т.е. становится неравновесным. При этом, в «легкой» товарной фракции каскада при неравновесном состоянии трихлорсилана количество легкого изотопа кремний-28, содержащегося в массовой компоненте 134 а.е.м., было бы меньше, чем в равновесном состоянии, а количество изотопа кремний-28, содержащегося, например, в массовой компоненте 136 а.е.м. - больше, чем в равновесном состоянии.

Решив проблему приведения трихлорсилана в равновесное состояние в ступенях каскада, можно добиться увеличения разделительного эффекта за счет перераспределения изотопа кремний-28 из более тяжелых массовых компонент в более легкую 134 а.е.м.

Восстановить равновесное состояние можно при помощи реакций изотопного обмена между молекулами трихлорсилана.

Целью данного изобретения является: разработка способа получения высокообогащенного более 99,9% изотопа кремний-28 на каскаде газовых центрифуг с использованием устройств изотопного обмена с целью достижения более высокой производительности и степени извлечения изотопа кремний-28 из исходного сырья.

Поставленная цель достигается тем, что в разделительном каскаде газовых центрифуг осуществляется реакция изотопного обмена, в результате которой происходит изотопное выравнивание в молекулах трихлорсилана. Проведение реакций изотопного обмена осуществляется при помощи специальных устройств, заполненных твердым катализатором с развитой поверхностью. Устройства устанавливаются в трассы тяжелой фракции ступеней каскада.

Пример.

Опытные работы проведены на восемнадцатиступенном каскаде газовых центрифуг. В табл.2 приведен молекулярный состав трихлорсилана и содержание изотопа кремний-28 в трассе легкой фракции каскада при следующих условиях разделения:

1. Без использования в каскаде изотопного обмена.

2. С использованием изотопного обмена (с установкой в трассы тяжелой фракции ступеней каскада устройств для проведения реакций изотопного обмена).

3. Расчетный равновесный состав, соответствующий равновероятному распределению изотопов кремния и хлора по массовым компонентам трихлорсилана.

Таблица 2
Составы трихлорсилана и содержание изотопа кремний-28 в трассе легкой фракции каскада газовых центрифуг при различных условиях разделения
№ п/пРаспределение молекул трихлорсилана по массовым компонентам, %Содержание изотопа кремний-28, %1341351361371381391401411421431Изотопный обмен в каскаде не используется50,002,7439,341,355,900,220,440,0050,005-93,742Используются устройства для проведения изотопного обмена в каскаде60,202,5130,081,225,320,240,400,020,01-94,053Расчетный равновесный состав60,992,3429,991,115,060,170,320,010,01-

Расчет равновесного состава (п.3 табл.2) производился по методике [2].

В качестве твердого катализатора, загружаемого в устройства, использовался «Волокнистый сорбционно-активный материал марки А, наполненный активированным углем марки АГ-3» ТУ 6-05-32-500-84, может использоваться и другой эффективный для данной реакции изотопного обмена катализатор. Устройства могут нагреваться для повышения эффективности их работы.

Как видно из табл.2, молекулярный состав трихлорсилана (п.1 табл.2), получаемый в трассе легкой фракции каскада газовых центрифуг без использования устройств для проведения реакций изотопного обмена, отличается от состава, полученного с использованием устройств для изотопного обмена (п.2 табл.2.) при одинаковом исходном составе трихлорсилана в питании каскада. Существенное отличие состоит в том, что при использовании изотопного обмена более высокое содержание массовой компоненты 134 а.е.м., а значит и изотопа кремний-28. Незначительное отличие состава трихлорсилана в п.2 и в п.3 табл.2 свидетельствует о высокой эффективности устройств изотопного обмена.

На оптимизированных каскадах газовых центрифуг, рассчитанных по методике [2], при использовании устройств для проведения изотопного обмена можно добиться увеличения производительности каскада на величину более 20% при условии сохранения высокой более 99,9% концентрации по изотопу кремний-28.

Предлагаемый способ отличается тем, что каскад газовых центрифуг работает на многокомпонентной изотопной смеси, находящейся в состоянии, близком к равновесному. За счет этого разделительный процесс отличается большей производительностью и степенью извлечения целевого изотопа из исходного сырья.

Источники информации

1. А.К.Калитеевский, Р.Д.Смирнов, О.Н.Годисов. Расчетно-экспериментальное исследование характеристик каскада для разделения стабильных изотопов. // Доклад на 3-ей всероссийской конференции «Физико-химические процессы при селекции атомов и молекул». Звенигород, 5-9 октября, 1998 г.

2. А.А.Сазыкин. Некоторые проблемы разделения полиизотопных смесей кинетическими методами. // Доклад на 3-ей всероссийской конференции «Физико-химические процессы при селекции атомов и молекул». Звенигород, 5-9 октября, 1998 г.

Похожие патенты RU2265476C2

название год авторы номер документа
ЦЕНТРОБЕЖНЫЙ СПОСОБ ПОЛУЧЕНИЯ ВЫСОКООБОГАЩЕННОГО ИЗОТОПА С И УСТРОЙСТВО ДЛЯ ПРОВЕДЕНИЯ РЕАКЦИЙ ИЗОТОПНОГО ОБМЕНА В КАСКАДЕ ГАЗОВЫХ ЦЕНТРИФУГ 2002
  • Пульников И.И.
  • Рябухин А.В.
  • Шарин Г.А.
  • Сенченко В.В.
  • Палиенко А.А.
RU2236895C2
Способ получения особочистого высокообогащенного изотопа кремний-28 2018
  • Палиенко Александр Александрович
  • Совач Виктор Петрович
  • Ушаков Антон Андреевич
RU2693786C1
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКООБОГАЩЕННЫХ ИЗОТОПОВ ИРИДИЯ 2007
  • Елисеев Евгений Викторович
  • Пульников Иван Илларионович
  • Савицкий Андрей Викторович
  • Шарин Геннадий Александрович
  • Калитеевский Алексей Кириллович
  • Годисов Олег Никленович
  • Мязин Леонид Петрович
  • Федоров Владимир Викторович
  • Костылев Александр Иванович
  • Покровский Юрий Германович
RU2351388C2
СПОСОБ ПОЛУЧЕНИЯ ИЗОТОПОВ НЕОДИМА 2015
  • Годисов Олег Никленович
  • Мязин Леонид Петрович
  • Тютин Борис Владимирович
  • Морозов Андрей Александрович
  • Костылев Александр Иванович
  • Мазгунова Вера Александровна
  • Филимонов Сергей Васильевич
  • Зырянов Сергей Михайлович
  • Сидько Юрий Анатольевич
RU2638858C2
Способ разделения изотопов циркония 2022
  • Галкин Данил Евгеньевич
  • Гришмановский Павел Александрович
  • Палиенко Александр Александрович
  • Совач Виктор Петрович
  • Кущ Олег Анатольевич
  • Ушаков Антон Андреевич
RU2794182C1
СПОСОБ ПОЛУЧЕНИЯ ГЕКСАФТОРИДА НИЗКООБОГАЩЕННОГО УРАНА ИЗ ОРУЖЕЙНОГО ВЫСОКООБОГАЩЕННОГО УРАНА 2005
  • Водолазских Виктор Васильевич
  • Журин Владимир Анатольевич
  • Ледовских Александр Константинович
  • Лазарчук Валерий Владимирович
  • Козлов Владимир Андреевич
  • Мазин Владимир Ильич
  • Стерхов Максим Иванович
  • Шидловский Владимир Владиславович
  • Щелканов Владимир Иванович
RU2292303C2
Способ получения обогащенного изотопа бор-10 2019
  • Асадулин Ринат Спартакович
  • Галкин Данил Евгеньевич
  • Маслов Александр Юрьевич
  • Совач Виктор Петрович
  • Ушаков Антон Андреевич
RU2720774C1
СПОСОБ РАЗДЕЛЕНИЯ ИЗОТОПОВ КРЕМНИЯ 2000
  • Тихомиров А.В.
RU2172642C1
Способ получения высокообогащенных изотопов с промежуточным массовым числом 2019
  • Совач Виктор Петрович
  • Ушаков Антон Андреевич
RU2723866C1
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКООБОГАЩЕННЫХ ИЗОТОПОВ ВАНАДИЯ 2002
  • Калитеевский А.К.
  • Годисов О.Н.
  • Сафронов А.Ю.
  • Федоров В.В.
  • Костылев А.И.
  • Покровский Ю.Г.
  • Шепелев П.К.
  • Мязин Л.П.
RU2226424C2

Реферат патента 2005 года СПОСОБ ПОЛУЧЕНИЯ ВЫСОКООБОГАЩЕННОГО ИЗОТОПА КРЕМНИЙ-28

Изобретение предназначено для ядерной техники и химической промышленности. Исходный трихлорсилан пропускают через разделительный каскад газовых центрифуг. В трассы тяжелой фракции ступеней каскада устанавливают устройства для проведения реакции изотопного обмена, содержащие твердый катализатор с развитой поверхностью, например волокнистым сорбционно-активным материалом, наполненным активированным углем. Устройства можно нагревать для повышения эффективности работы. Использование этих устройств позволяет привести трихлорсилан в ступенях каскада в равновесное состояние. Целевой изотоп кремний-28 отбирают из трасс легкой фракции. Изобретение позволяет получить высокообогащенный более 99,9% изотоп кремний-28 с высокой производительностью и степенью извлечения. 1 з.п. ф-лы, 2 табл.

Формула изобретения RU 2 265 476 C2

1. Способ получения высокообогащенного изотопа кремний-28 с использованием трихлорсилана в качестве рабочего вещества центробежным способом, состоящий в пропускании исходного трихлорсилана через разделительный каскад газовых центрифуг, отличающийся тем, что в трассы тяжелой фракции ступеней каскада устанавливают устройства для проведения реакции изотопного обмена, содержащие твердый катализатор с развитой поверхностью.2. Способ по п.1, отличающийся тем, что устройства для проведения реакций изотопного обмена нагревают.

Документы, цитированные в отчете о поиске Патент 2005 года RU2265476C2

СПОСОБ РАЗДЕЛЕНИЯ ИЗОТОПОВ КРЕМНИЯ 2000
  • Тихомиров А.В.
RU2172642C1
ЮВЕЛИРНОЕ УКРАШЕНИЕ ИЗ МАТЕРИАЛОВ С ИЗМЕНЕННЫМ ИЗОТОПНЫМ СОСТАВОМ 1998
  • Калитеевский А.К.
RU2128934C1
US 4824537 A, 25.04.1989
Перекатываемый затвор для водоемов 1922
  • Гебель В.Г.
SU2001A1
БОРЕСКОВ Г.К
и др
Гомомолекулярный изотопный обмен СО на окислах металлов IV периода
Кинетика и катализ
Приспособление к индикатору для определения момента вспышки в двигателях 1925
  • Ярин П.С.
SU1969A1
TARBEYEV Y.V
et al
Scientific, Engineering and Metrological Problems in Producing Pure 28Si and Growing Single Crystals
Metrologia
Прибор для охлаждения жидкостей в зимнее время 1921
  • Вознесенский Н.Н.
SU1994A1

RU 2 265 476 C2

Авторы

Пульников И.И.

Рябухин А.В.

Шарин Г.А.

Сенченко В.В.

Палиенко А.А.

Даты

2005-12-10Публикация

2002-04-30Подача