МАГНИТООПТИЧЕСКИЙ МОДУЛЯТОР ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ НА ЭФФЕКТЕ УПРУГОИНДУЦИРОВАННОГО ПЕРЕМАГНИЧИВАНИЯ Российский патент 2005 года по МПК G02B26/04 G02F1/09 

Описание патента на изобретение RU2266552C1

Изобретение относится к нелинейной интегральной и волоконной оптике, может применяться для высокоскоростной, эффективной обработки информации (со скоростями переключения не более десятков фемтосекунд).

Известен магнитооптический модулятор для модуляции электромагнитною излучения в видимом и ближнем инфракрасном диапазоне, который состоит из источника света, поляризатора, анализатора и магнитооптического элемента, состоящего из подложки с искусственно созданной на ее поверхности периодической структурой в виде системы полосок субмикронных размеров (глубиной 0.1÷5 мкм), покрытой магнитооптической пленкой (толщиной 5÷200 нм). Искусственно созданная структура должна повторять основные параметры передаваемого через модулятор изображения. Магнитооптической пленкой являются различные ферромагнитные материалы, обладающие значительным эффектом Фарадея, которые защищаются покрытием. При магнитной индукции с амплитудой до 10 кГс время переключения проходящего через модулятор излучения составило порядка нескольких фемтосекунд /1/.

Недостатками этого устройства является сложность конструкции и изготовления, высокая коэрцитивность магнитооптического слоя, возможность применения для обработки только конкретного изображения или объекта, а также необходимость применения магнитных полей большой величины.

По существу решаемой задачи наиболее близким является магнитооптический транспарант на основе доменосодержащей магниточувствительной пленки, в которой формируют единственную доменную стенку путем воздействия на нее градиентным магнитным полем. Воздействуя на нее внешним магнитным полем, изменяют положение единственной доменной границы в пленке везде кроме локальной неперемагничиваемой области, ограниченной дополнительными катушками, в которые подается однородное противоположно направленное магнитное поле.

Недостатком принятого за прототип предлагаемого устройства является невозможность увеличения скорости движения доменных границ (не более 4000 м/с), что ограничивает динамические характеристики данного устройства (время перемагничивания одной ячейки не менее 100 нс). На сверхзвуковых скоростях доменная граница в ферромагнетиках (например, в ортоферрите иттрия) становится не прямолинейной, что вызывает разброс времени перемагничивания каждой ячейки. Помимо этого, для записи информации необходимо прикладывать внешние магнитные поля двух взаимно противоположных направлений величиной, превышающей поле коэрцитивности.

Технический результат - повышение быстродействия (вплоть до частот оптического диапазона) и надежности работы (энергия управления порядка 1 Э, время переключения не более десятков фс) устройств оптической обработки информации на основе эффекта упруго индуцированного перемагничивания /3/.

Технический результат достигается тем, что в магнитооптическом модуляторе электромагнитного излучения на эффекте упруго индуцированного перемагничивания, включающем прозрачную для соответствующей длины волны электромагнитного излучения, создаваемого источником электромагнитного излучения, пластину слабого ферромагнетика, размещенную между катушками Гельмгольца, включенными согласно, попарно, связанными с генератором магнитных импульсов, и размещенную между жестко закрепленными магнитами для создания устойчивой прямолинейной доменной границы в однородно намагниченной доменной области катушек Гельмгольца, к пластине слабого ферромагнетика присоединены элементы механическою давления с возможностью создания постоянного механического давления, которое совместно с воздействием импульсного магнитного поля, создаваемого катушками Гельмгольца, вызывает упруго индуцируемое перемагничивание пластины слабого ферромагнетика.

Сопоставительным анализом с прототипом установлено отличие предлагаемого устройства, заключающееся в построении магнитооптического модулятора электромагнитного излучения на эффекте упруго индуцированного перемагничивания. При этом в устройстве управления используется тонкая оптически прозрачная пластинка, изготовленная из слабоферромагнитного материала (ортоферритов, бората железа); удачное сочетание в этих материалах, с одной стороны, сверхзвуковой скорости движения доменной границы, возникновения магнитоупругого взаимодействия в условиях фазового синхронизма в момент преодоления доменной границей звукового барьера, который сопровождается перенормировкой констант анизотропии и упруго индуцированным механизмом перемагничивания, а с другой стороны, высокой магнитооптической добротности (в указанном диапазоне), создают условия для высокоэффективной модуляции проходящего электромагнитного излучения (с глубиной не менее 50%). В монокристаллической пластинке с помощью градиентного магнитного поля постоянной величины (от 10 до 150 Э/мм в зависимости от состава применяемого слабоферромагнитного материала) создается устойчивая двухдоменная структура с прямолинейной одиночной доменной границей. Движение доменной границы вызывается импульсным магнитным полем с амплитудой от 5 до 50 Э, создаваемым током в паре катушек Гельмгольца, между которыми помещается образец. В таких импульсных магнитных полях доменная граница движется с околозвуковыми скоростями. Помимо этого, пластина подвергается постоянному механическому давлению величиной порядка нескольких ГПа. Совокупность указанных воздействий на пластину слабого ферромагнетика вызывает упруго индуцированный механизм перемагничивания слабоферромагнитного материала, который характеризуется магнитооптическим контрастом (50%) и аномально высокой скоростью распространения (превышающей предельную скорость стационарного движения доменной границы в слабоферромагнитном материале). Это позволяет более чем на два порядка повысить скорость модуляции света, доведя ее до не более десятков фемтосекунд.

Таким образом, заявляемое устройство соответствует критерию изобретения "новизна". При изучении других решений в данной области признаки, отличающие заявляемое изобретение от прототипа, выявлены не были, и поэтому они обеспечивают ему соответствие критерию "существенные отличия".

Устройство - магнитооптический модулятор электромагнитного излучения на эффекте упруго индуцированного перемагничивания схематично представлено на чертежах.

На фиг.1 - общий вид магнитооптического модулятора; на фиг.2 - разрез А-А на фиг.1; на фиг.3, фиг.4, фиг.5 - иллюстрация действия упруго индуцированного перемагничивания.

Устройство включает пластину слабого ферромагнетика 1, прозрачную для соответствующей длины волны электромагнитного излучения 2, создаваемого источником электромагнитного излучения 3. Пластина слабого ферромагнетика 1 размещена между катушками Гельмгольца 4, включенными согласно, попарно, связанными с генератором магнитных импульсов 5. Пластина слабого ферромагнетика 1 размещена между жестко закрепленными магнитами 6 для создания устойчивой прямолинейной доменной границы 7 в однородно намагниченной доменной области катушек Гельмгольца 4. К пластине слабого ферромагнетика 1 присоединены элементы механического давления 9 с возможностью создания постоянного механического давления, которое совместно с воздействием импульсного магнитного поля, создаваемого катушками Гельмгольца 4, вызывает упруго индуцируемое перемагничивание 8 пластины слабого ферромагнетика 1.

Магнитооптический модулятор электромагнитного излучения на эффекте упруго индуцированного перемагничивания работает следующим образом. В исходном состоянии плоскость пластины слабого ферромагнетика 1 сориентирована перпендикулярно оптической оси и падающему электромагнитному излучению 2, создаваемого источником электромагнитного излучения 3. В пластине слабого ферромагнетика 1, размещенную между жестко закрепленными магнитами 6, установленными с возможностью получения градиентного магнитного поля постоянной величины для создания устойчивой прямолинейной доменной границы 7, создается двухдоменная структура, разделенная устойчивой прямолинейной доменной границей 7, удерживаемой в одном из крайних положений внутри катушек Гельмгольца 4 однородно намагниченной доменной области. В исходном состоянии электромагнитное излучение 2, создаваемое источником электромагнитного излучения 3, поляризовано перпендикулярно намагниченности наибольшей однородно намагниченной доменной области внутри катушек Гельмгольца 4.

Работу магнитооптического модулятора электромагнитного излучения на эффекте упруго индуцированного перемагничивания иллюстрируют фиг.3, фиг.4, фиг.5. Поляризованное электромагнитное излучение 2 (фиг.2) поступает в наибольшую однородно намагниченную доменную область внутри катушек Гельмгольца 4 (фиг.3, фиг.5). В катушки Гельмгольца 4 подается импульс магнитного поля (амплитудой от 5 до 50 Э с длительностью до 1 мкс) от генератора магнитных импульсов 5 (фиг.1), который вызывает движение устойчивой прямолинейной доменной границы 7 со сверхзвуковой скоростью, сопровождаемое динамической деформацией. Наличие в этих условиях постоянного механического давления 9, прикладываемою к пластине слабого ферромагнетика 1 при движении доменной границы со сверхзвуковыми скоростями, приводит к возникновению высокоскоростного упруго индуцированного перемагничивания 8, управляемого генератором магнитных импульсов 5. Время переключения электромагнитного излучения помимо скорости распространения упруго индуцированного перемагничивания определяется еще и размерами пятна (или пятен) его фокусировки в наибольшей однородно намагниченной доменной области внутри катушек 4.

Таким образом, управляемый генератором магнитных импульсов магнитооптический модулятор электромагнитного излучения на эффекте упруго индуцированного перемагничивания позволяет осуществлять переключение электромагнитного излучения с временами не более десятков фемтосекунд с пятидесятипроцентным коэффициентом пропускания.

Источники информации

1. Патент США №6243193 В1, кл. G 02 F 1/09, 2001.

2. Авт.свид. №1451766, кл. G 11 С 11/14, 1988.

3. ФММ, 2001, т.92, №1, с.12-19.

Похожие патенты RU2266552C1

название год авторы номер документа
УСТРОЙСТВО УПРАВЛЕНИЯ ПЕРЕДАЧЕЙ ПОЛЯРИЗОВАННОГО ЛАЗЕРНОГО ИЗЛУЧЕНИЯ К ОПТИЧЕСКИМ ДЕТОНАТОРАМ НА ОСНОВЕ МАГНИТООПТИЧЕСКОГО ПРОСТРАНСТВЕННО-ВРЕМЕННОГО МОДУЛЯТОРА 2001
  • Кузьменко А.П.
  • Леоненко Н.А.
  • Павлова Н.А.
  • Жуков Е.А.
RU2204876C2
СПОСОБ ИЗМЕРЕНИЯ МАГНИТНОГО ПОЛЯ 2015
  • Комина Ольга Юрьевна
  • Жуков Евгений Александрович
  • Адамова Мария Евгеньевна
  • Каминский Александр Викторович
  • Щербаков Юрий Иванович
RU2584720C1
Модулятор интенсивности пучка поляризованных гамма-квантов 1981
  • Смирнов Г.В.
  • Швыдько Ю.В.
  • Колотов О.С.
  • Погожев В.А.
SU1003683A1
Способ изготовления анизотропной электротехнической стали 1990
  • Драгошанский Юрий Николаевич
  • Губернаторов Владимир Васильевич
  • Соколов Борис Константинович
  • Шулика Валентина Владимировна
  • Ханжина Тамара Александровна
  • Чистяков Владимир Константинович
SU1744128A1
Устройство для неразрушающего контроля сжимающих механических напряжений в низкоуглеродистых сталях 2017
  • Сташков Алексей Николаевич
  • Ничипурук Александр Петрович
RU2658595C1
Способ контроля механических свойств металлопроката, изготовленного из ферромагнитных металлических сплавов и устройство для его осуществления 2023
  • Цыпуштанов Александр Григорьевич
RU2807964C1
УСТРОЙСТВО ДЛЯ АВТОМАТИЧЕСКОЙ ЗАЩИТЫ ЦВЕТНОГО КИНЕСКОПА ОТ МАГНИТНЫХ ПОЛЕЙ 1991
  • Цырульников Б.Н.
RU2039421C1
Магнитооптический управляемый транспарант 1990
  • Четкин Михаил Васильевич
  • Лыков Вадим Викторович
  • Ахуткина Александра Ивановна
  • Балбашов Анатолий Михайлович
  • Дидосян Юрий Сергеевич
SU1783578A1
СПОСОБ ТОРОИДНОЙ ЗАПИСИ И ВОСПРОИЗВЕДЕНИЯ ИНФОРМАЦИИ 1993
  • Дубовик Владимир Михайлович
  • Марценюк Михаил Андреевич
  • Марценюк Николай Михайлович
  • Сенченко Виктор Алексеевич
RU2114466C1
Устройство для измерения радиуса кривизны магнитного поля 1982
  • Дубинко Сергей Владимирович
  • Иванов Виктор Александрович
  • Пухов Игорь Константинович
SU1078369A1

Иллюстрации к изобретению RU 2 266 552 C1

Реферат патента 2005 года МАГНИТООПТИЧЕСКИЙ МОДУЛЯТОР ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ НА ЭФФЕКТЕ УПРУГОИНДУЦИРОВАННОГО ПЕРЕМАГНИЧИВАНИЯ

Модулятор относится к нелинейной интегральной и волоконной оптике и может применяться для высокоскоростной, эффективной обработки информации, передаваемой электромагнитным излучением. Модулятор включает прозрачную пластину слабого ферромагнетика, размещенную между катушками Гельмгольца, включенными согласно, попарно, связанными с генератором магнитных импульсов, и размещенную между жестко закрепленными магнитами для создания устойчивой прямолинейной доменной границы в однородно намагниченной доменной области катушек Гельмгольца. К пластине присоединены элементы механического давления для создания постоянного механического давления, которое совместно с воздействием импульсного магнитного поля, создаваемого катушками Гельмгольца, вызывает упруго индуцируемое перемагничивание пластины слабого ферромагнетика. Технический результат - повышение быстродействия вплоть до частот оптического диапазона и надежности работы (энергия управления порядка 1 Э, время переключения не более десятков фс) устройств оптической обработки информации. 5 ил.

Формула изобретения RU 2 266 552 C1

Магнитооптический модулятор электромагнитного излучения на эффекте упругоиндуцированного перемагничивания, включающий прозрачную для соответствующей длины волны электромагнитного излучения, создаваемого источником электромагнитного излучения, пластину слабого ферромагнетика, размещенную между катушками Гельмгольца, включенными согласно попарно, связанными с генератором магнитных импульсов, и размещенную между жестко закрепленными магнитами для создания устойчивой прямолинейной доменной границы в однородно намагниченной доменной области катушек Гельмгольца, при этом к пластине слабого ферромагнетика присоединены элементы механического давления с возможностью создания постоянного механического давления, которое совместно с воздействием импульсного магнитного поля, создаваемого катушками Гельмгольца, вызывает упругоиндуцируемое перемагничивание пластины слабого ферромагнетика.

Документы, цитированные в отчете о поиске Патент 2005 года RU2266552C1

Магнитооптический управляемый транспарант 1990
  • Четкин Михаил Васильевич
  • Лыков Вадим Викторович
  • Ахуткина Александра Ивановна
  • Балбашов Анатолий Михайлович
  • Дидосян Юрий Сергеевич
SU1783578A1
УСТРОЙСТВО УПРАВЛЕНИЯ ПЕРЕДАЧЕЙ ПОЛЯРИЗОВАННОГО ЛАЗЕРНОГО ИЗЛУЧЕНИЯ К ОПТИЧЕСКИМ ДЕТОНАТОРАМ НА ОСНОВЕ МАГНИТООПТИЧЕСКОГО ПРОСТРАНСТВЕННО-ВРЕМЕННОГО МОДУЛЯТОРА 2001
  • Кузьменко А.П.
  • Леоненко Н.А.
  • Павлова Н.А.
  • Жуков Е.А.
RU2204876C2
US 4578651 A, 25.03.1986
US 6243193 A, 05.06.2001.

RU 2 266 552 C1

Авторы

Кузьменко А.П.

Жуков Е.А.

Леоненко Н.А.

Каминский А.В.

Цдзянхуа Ли

Даты

2005-12-20Публикация

2004-03-29Подача