FIELD: mining, particularly methods of underground mining.
SUBSTANCE: method involves cutting mineral by hydrocutting machines and headers from face massif in rectangular blocks; putting on metal cases on the blocks to facilitate loading-and-unloading operations and transportation; loading the cut blocks on hauling truck along side previously opened from breakage face side, wherein the truck position is fixed by spacing apart hydraulic post permanently connected to the hauling truck; moving loaded hauling trucks inside breakage face by hauling tracks along channel, V-shaped guiders or guiding rails with the use of haulage cargo winches arranged in berms near conveying tunnels or with the use of independent drives, wherein the conveyance is carried out to conveying and venting tunnels abutting the breakage face; loading mineral blocks from hauling trucks onto wheeled transport platforms without block turning for following transportation. Distance between rail tracks is equal to rail track width to transport blocks on paired wheeled platforms in which locomotive moves along medium track. Working area face is strengthened by individual hydraulic posts and metal hydraulic jacks and metal roof bars or by mechanized face support. The face support has fastening sections including above hydraulic jacks and roof bars, as well as wheel guiding means sections and hydraulic movers with control panel arranged on each fastening section pair. The roof is controlled by partial filling the excavated space with mineral blocks. Distance between neighboring mineral units arranged on one paired wheeled platform and on adjacent platforms may be identical and equal to distance between guiders in breakage heading. Mineral blocks are cut in several rows, wherein depth of slot at seam ground and roof is two times as thickness of mineral blocks to be cut.
EFFECT: increased output, improved safety and ecology.
3 cl, 14 dwg
Authors
Dates
2006-01-27—Published
2003-07-10—Filed