Изобретение относится к способам локации целей в облаке пассивных помех и может найти применение в локаторах.
Известны способы и устройства локации целей, предназначенные для использования в радиолокаторах - Method for distributed data association and multi-target tracking, США, патент №5138321, дата публикации: 11.08.1992; Radar target signature detector, США, патент №5191343, дата публикации: 2.03.1993; Radar systems, Великобритания, патент №GB 2265513, дата публикации: 29.09.1993.
В качестве прототипа изобретения может быть рассмотрен патент US №6300895, дата публикации: 9.10.2001, «Discreet radar detection method and system of implementation there of».
Общим недостатком предлагаемых технических решений является необходимость обнаружения и измерения параметров всех целей, находящихся в зоне действия локатора, после чего предполагается выделение (селекция) искомых целей по измеренным их параметрам. Для относительно малого общего количества целей в совокупном объеме сложной цели эти решения позволяют достичь требуемого результата в рамках существующих и перспективных вычислительных средств. При использовании достаточно большого количества ложных целей, например дипольных отражателей (5...10 кассет по 106...108 диполей в каждой в зависимости от диапазона работы локатора), использование предлагаемых технических решений является нереальным по причине недостаточной производительности вычислительных средств.
Сущность предлагаемого способа локации целей в облаке пассивных помех основана на выборе несущей частоты зондирующего сигнала локатора в области рентгеновского или гамма-излучения, с целью получения откликов от целей не за счет наведения токов в проводящей оболочке цели или помехи, а за счет рассеяния рентгеновских лучей на электронных оболочках атомов или гамма-лучей на атомных ядрах всей массы цели (эффект Комптона).
Технический результат изобретения заключается в прямом измерении массивности цели, что физически невозможно воспроизвести в ложных целях, а значит предлагаемый способ локации позволяет выделить истинную цель в облаке пассивных помех, без проведения процессов обнаружения и распознавания всех целей в облаке сложной цели.
Сведения, подтверждающие возможность осуществления изобретения.
Пример осуществления изобретения в виде блок-схемы рентгеновского (гамма-) локатора с выделением стабильной во времени детерминированной задержки откликов рассеянного сигнала от цели относительно излученного сигнала приведен на чертеже. Цифрами обозначены:
1 - Рентгеновская трубка
2 - Радиометр-рентгенметр
3 - Генератор высоковольтных импульсов
4 - Усилитель
5 - Устройство обработки сигнала (критерий завязки трасс: n из m, критерий сброса трассы: k пропусков)
6 - Пороговое устройство обнаружения τц≥Δt, где: τц - время существования трассы, Δt - критериальный интервал.
Цели облучаются короткими импульсами рентгеновского излучения, причем энергия излучения соответствует напряжению на электродах рентгеновской трубки, например РТ-180М. Направленность излучения, характерная для рентгеновских трубок (4...10°), достаточна для большинства применений. Рентгеновские лучи или гамма-лучи рассеиваются на электронных оболочках атомов или на атомных ядрах всей массы цели (эффект Комптона), при этом длина волны рассеянного излучения изменяется пропорционально углу рассеяния и имеет максимум в направлении обратного излучения (см. Б.М.Яворский и А.А.Детлаф, Справочник по физике, «Наука», -М., 1965):
Рассеивающий электрон или нуклон (электрон или нуклон отдачи) приобретает максимум кинетической энергии также в направлении обратного рассеяния:
и также может быть использован для обнаружения целей.
Рассеянное рентгеновское или γ-излучения, а также электроны или нуклоны отдачи принимаются детектором, чувствительным как к рентгеновскому, так и к ионизирующему излучению электронов (нуклонов) отдачи, например СБМ-20.
Амплитуда принятого сигнала от любой цели будет прямо пропорциональна количеству атомов в этой цели, их атомному номеру (для рассеяния рентгеновского излучения) или массовому числу ядра (для рассеяния γ-излучения). Очевидно, что пассивные помехи, выполненные из каркасных тканевых конструкций, тонкой алюминиевой проволоки или синтетической пленки, покрытые слоем алюминия массой в единицы и доли грамма будут давать на несколько порядков меньший отклик, чем истинная цель массой несколько сотен килограмм, выполненная в основном из стали. Отклик будет максимален при выполнении боевого снаряжения цели из делящихся материалов.
Схема обработки для обнаружения цели и построения трассы ее движения ничем не отличается от схем традиционных локаторов.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ЛОКАЦИИ ЦЕЛЕЙ | 2003 |
|
RU2269793C2 |
ИОННАЯ ДВИГАТЕЛЬНАЯ УСТАНОВКА КОСМИЧЕСКИХ АППАРАТОВ | 2012 |
|
RU2518467C2 |
СПОСОБ ЛОКАЦИИ ЦЕЛЕЙ | 2004 |
|
RU2271020C2 |
СПОСОБ КОМПТОН-ФЛЮОРЕСЦЕНТНОГО ЭЛЕМЕНТНОГО АНАЛИЗА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2004 |
|
RU2284028C2 |
МИШЕНЬ, ПРЕОБРАЗУЮЩАЯ ИЗЛУЧЕНИЕ В ФОТОНЕЙТРОНЫ | 2008 |
|
RU2406171C1 |
СПОСОБ ОБНАРУЖЕНИЯ АЛМАЗОВ НА КОНВЕЙЕРЕ, В ПОТОКЕ ИЛИ ОБРАЗЦЕ АЛМАЗОНОСНОЙ ПОРОДЫ | 2000 |
|
RU2193185C2 |
Способ регуляризованного обнаружения полезных сигналов загоризонтной радиолокации при нестационарном ионосферно-пространственном распространении радиоволн | 2023 |
|
RU2817867C1 |
СПОСОБ ОБНАРУЖЕНИЯ ВЗРЫВЧАТОГО ВЕЩЕСТВА В КОНТРОЛИРУЕМОМ ПРЕДМЕТЕ | 2001 |
|
RU2206080C1 |
СПОСОБ ОБНАРУЖЕНИЯ ОБЪЕКТОВ ЯДЕРНЫХ ТЕХНОЛОГИЙ РАДИОЗОНДИРОВАНИЕМ | 2011 |
|
RU2502087C2 |
СПЕКТРАЛЬНЫЙ АНАЛИЗ С ИСПОЛЬЗОВАНИЕМ СПЕКТРАЛЬНОЙ ДЕКОНВОЛЮЦИИ | 2014 |
|
RU2665330C2 |
Изобретение относится к способам локации целей в облаке пассивных помех и может найти применение в локаторах. Достигаемым техническим результатом изобретения является выделение искомого объекта (объектов) в облаке диполей, без проведения процессов обнаружения и распознавания всех целей в облаке сложной цели. Указанный результат достигается путем облучения целей зондирующим сигналом с несущей частотой в области рентгеновского или γ-излучения, с целью получения откликов от целей не за счет наведения токов в проводящей оболочке цели или помехи, а за счет рассеяния рентгеновских лучей на электронных оболочках атомов или гамма-лучей на атомных ядрах всей массы вещества цели (эффект Комптона), и выделении за счет этого приемником отклика от цели прямо пропорционального количеству атомов в этой цели, их атомному номеру (для рассеяния рентгеновского излучения) или массовому числу ядра (для рассеяния γ-излучения). Пассивные помехи, выполненные из каркасных тканевых конструкций, тонкой алюминиевой проволоки или синтетической пленки, покрытые слоем алюминия массой в единицы и доли грамма будут давать на несколько порядков меньший отклик, чем истинная цель массой несколько сотен килограмм, выполненная в основном из стали. Отклик будет максимален при выполнении боевого снаряжения цели из делящихся материалов. 1 ил.
Способ локации целей в облаке пассивных помех для применения в локаторах, основанный на измерении и анализе параметров отраженных от целей сигналов, отличающийся тем, что в локаторе используют зондирующий сигнал с несущей частотой в области рентгеновского или гама-излучения, выделяют приемником отклик от цели, полученный за счет рассеяния рентгеновских лучей на электронных оболочках атомов или гамма-лучей на атомных ядрах всей массы цели, по максимуму амплитуды которого, прямо пропорциональной количеству атомов в этой цели, их атомному номеру для рассеянного рентгеновского излучения или массовому числу ядра для рассеянного гамма-излучения, а также измеренной массивности цели - обнаруживают объект.
US 6300895 B1, 09.10.2001 | |||
СПОСОБ ОПРЕДЕЛЕНИЯ ОБЪЕМНОЙ ПЛОТНОСТИ ГОРНЫХ ПОРОД | 1992 |
|
RU2040020C1 |
RU 2058027 C1, 10.04.1996 | |||
СПОСОБ ОБНАРУЖЕНИЯ И НЕРАЗРУШАЮЩЕГО АНАЛИЗА ВЕЩЕСТВ, СОДЕРЖАЩИХ ЯДРА ЛЕГКИХ ЭЛЕМЕНТОВ | 1996 |
|
RU2095796C1 |
US 4817122 A, 28.03.1989 | |||
US 4974247 A, 27.11.1990 | |||
ПЕРЕСТАВИТЕЛЬСТЕКЛОИЗДЕЛИЙ | 1972 |
|
SU421640A1 |
Авторы
Даты
2006-02-10—Публикация
2003-12-15—Подача