ФИЛЬТРУЮЩИЙ МАТЕРИАЛ, ФИЛЬТР ДЛЯ ОЧИСТКИ ГАЗОВ ОТ АЭРОЗОЛЕЙ И СПОСОБ ПОЛУЧЕНИЯ ФИЛЬТРУЮЩЕГО МАТЕРИАЛА Российский патент 2006 года по МПК B01D39/16 

Описание патента на изобретение RU2270714C1

Изобретение относится к области получения фильтровальных материалов из микроволокна и их использования для тонкой очистки воздуха и газов от дисперсных частиц, в т.ч. радиоактивных аэрозолей.

Известен сорбционно-фильтрующий материал для бактериальных фильтров из волокон политрифторстирола или полисульфона на основе бис-фенола А и 4,4-дихлорфенилсульфона, или поли-2,6-диметилфениленоксида, или поли-2,6-дифенилфениленоксида, или полидифениленфталида, или полиоксидифениленфталида, в котором угол разориентации макромолекул в волокне не более 30°, диаметр волокна 0,1-10 мкм и общая пористость 80-98%.

Способ получения этого материала включает электростатическое формование волокнистого нетканого материала из раствора полимера в органическом растворителе из группы: дихлорэтан, циклогексанон, трихлорэтилен, метилэтилкетон при динамической вязкости раствора 0,1-30 Пз, электропроводности раствора 10-4-10-7 Ом-1·см-1 и объемной скорости раствора 10-5-10-1 см3/с в расчете на один капилляр (RU 2055632, 10.09.96).

Недостатком материала является дефицитность исходного сырья и недостаточная эффективность улавливания аэрозолей.

Известен также состав для получения фильтрующего материала путем электростатического формования волокна, содержащий полисульфон и органический растворитель, в котором в качестве полисульфона используют полиарилсульфон, а в качестве органического растворителя циклогексанон или его смесь с дихлорэтаном при следующем соотношении компонентов, мас.%:

полиарилсульфон20,5-25,0циклогексанон или смесь его с дихлорэтаном15,9-75,0,

при этом содержание дихлорэтана в составе не должно превышать 63,6 мас.% (RU 2045996, 20.10.95).

Известный материал выдерживает стерилизацию острым паром с температурой 143° в течение 100 циклов (1 цикл 45 мин), т.е. образец не дает усадки, незначительно увеличивает аэродинамическое сопротивление по сравнению с первоначальным, и коэффициент проскока по частицам 0,3 мкм не превышает величины 1·10-2%. Однако такие характеристики являются недостаточными для некоторых сфер использования.

Известен аэрозольный фильтр, в корпусе которого размещены фильтрующие элементы, выполненные из зигзагообразно сложенного фильтровального материала с расположенными между складками разделителями. Фильтрующие элементы последовательно установлены в корпусе и выполнены из слоев волокнистого фильтровального материала различной плотности, при этом первый по потоку загрязненного воздуха слой фильтровального материала изготовлен из крупноволокнистого материала с размером волокон 5-10 мкм с низкой плотностью упаковки волокон не более 0,04, а второй - из тонковолокнистого материала с размером волокон 0,2-0,4 мкм с высокой плотностью упаковки волокон не более 0,25.

В качестве волокнистого материала предпочтительно использовано стекловолокно (RU 2192916, 20.11.2002).

Недостатком известного фильтра является его недостаточная термостойкость из-за применяемых связующих стекловолокна веществ.

Наиболее близким по технической сущности и достигаемому результату является фильтрующий материал из волокон полисульфона с диаметром волокна 1-8 мкм и поверхностной плотностью 25-35 г/см2, рамный фильтр на основе этого материала, а также способ получения этого фильтрующего материала путем электростатического формования волокон из системы полисульфон-растворитель-электролит, описанные в монографии Ю.Н.Филатова "Электроформование волокнистых материалов (ЭФВ-процесс)", М.: Нефть и газ, 1997, стр.180, 201, 191, 257.

Недостатком материала и соответственно фильтра на его основе является недостаточная эффективность улавливания аэрозолей.

Задачей настоящего изобретения является повышение термостойкости фильтрующего материала и эффективности улавливания аэродисперсных систем при постой конструкции аэрозольного фильтра.

Поставленная задача решается фильтрующим материалом, содержащим волокна из полисульфона, полученные путем электростатического формования из раствора, при этом он выполнен из смеси волокон диаметром 0,1-0,5 мкм и диаметром 5-10 мкм при их массовом соотношении (1:25)-(1:5) соответственно.

Предпочтительно, материал выполнен в виде нетканого полотна, имеющего по меньшей мере с одной стороны защитный слой из проклеенных полисульфоновых волокон диаметром 5-10 мкм.

Поставленная задача решается также фильтром для очистки газов от аэрозолей, содержащий корпус с сепараторами и рамочным элементом, имеющим параллельную развертку и снабженным волокнистым фильтрующим материалом, охарактеризованным выше, и имеющим общую массовую плотность 30-50 г/м2.

Поставленная задача решается также описываемым способом получения фильтрующего материала путем электростатического формования микроволокна из системы полисульфон-растворитель-электролит, в котором на электроде осаждают смесь полисульфоновых волокон с диаметром 0,1-0,5 мкм и с диаметром 5-10 мкм при их массовом соотношении (1:25)-(1:5) соответственно.

Причем предпочтительно формование осуществляют из раствора, содержащего 5-25 мас.% полисульфона в растворителе, выбранном из ряда: дихлорэтан, циклогексанон, бутилацетат, этилацетат, диметилформамид и электролитическую добавку в количестве 0,01-0,2% от массы полисульфона, выбранную из галогенидов тетраэтиламмония и тетрабутиламмония.

Материал в объеме существенных признаков описанных выше при его использовании обеспечивает высокую эффективность улавливания аэрозольных частиц и обладает термостойкостью вплоть до 160°С.

При выходе за заявленные интервалы содержания волокон с заявленными диаметрами либо снижается эффективность фильтрации, либо не достигается повышенная термостойкость.

Ниже приведены примеры получения и характеристики полученных материалов.

Пример 1.

Приготавливают 15% раствор полисульфона в ДХЭ с добавкой тетрабутиламмония иодита 0,01 мас.% с вязкостью 7 Пз и электропроводностью 5·10-6 Ом-1·см-1 для получения волокон с размером 7 мкм.

Приготавливают 17 мас.% раствора полисульфона в ЦГН с добавкой тетрабутиламмония иодита 0,02 мас.% с вязкостью 3 Пз и электропроводностью 1-10-5 Ом-1·см-1 для получения волокон с размером 0,3 мкм.

Эти растворы продавливают через дозаторы, помещенные в поле высокого напряжения 80 кВ, и получают методом электроформования на осадительном электроде волокнистый фильтрующий материал со смесью волокон 0,3 и 7 мкм с массовым соотношением 1/7.

Полученный материал выдерживает температуру воздуха 160°С в течение 10 часов, при этом эффективность фильтрации по частицам 0,3 мкм в разряженном состоянии составляет 99,99% при гидродинамическом сопротивлении 52 Па и линейной скорости фильтрации 1 см/с.

Примеры при других заявленных параметрах сведены в таблицу 1.

Пример 2.

Материал получен так же, как и в примере 1, но предварительно на осадительный электрод наносится защитный слой из проклеенных волокон того же диаметра, за счет приближения электродов на расстояние до 12 см.

Затем снаряжают полученным материалом фильтр, используя рамочные элементы и сепараторы. На чертеже фильтра показано: 1 - корпус, 2 - рамочный элемент, 3 - волокнистый фильтрующий элемент.

Материал испытан в заявленной конструкции аэрозольного фильтра и показал следующие результаты: термостойкость 160°С, эффективность улавливания в разряженном состоянии по наиболее проникающим частицам с размером 0,3 мкм - 99,99%, гидродинамическое сопротивление 60 Па при скорости потока газа 1 см/с.

ПримерКонцентрация полисульфона, мас.%Концентрация растворителей, мас.%Диаметр волокон, мкмСоотношение масс толстых/тонкихЭффективностьДХЭБутил-ацетатЭтил-ацетатЦГНДМФА115
17
85
-
-
-
-
-
-
83
-
-
7
0,3
24/199,99
214
16
-
-
86
-
-
-
-
-
-
84
8
0,2
15/199,999
316
18
-
-
-
-
84
-
-
-
-
82
9
0,1
5/199,9999
Прототип20,563,6--15,9-0,7-99,9

Похожие патенты RU2270714C1

название год авторы номер документа
МНОГОСЛОЙНЫЙ ФИЛЬТРУЮЩИЙ МАТЕРИАЛ 2008
  • Шепелев Алексей Дмитриевич
  • Будыка Александр Константинович
  • Рыкунов Владимир Аркадьевич
  • Ушакова Евгения Николаевна
  • Мамагулашвили Виссарион Георгиевич
  • Захарьян Арам Арташезович
  • Сырочко Василий Владимирович
  • Куликов Николай Константинович
  • Буланов Геннадий Анатольевич
  • Коробейникова Александра Васильевна
  • Подплетнева Галина Владимировна
  • Кривощеков Анатолий Паисеевич
  • Ворожцов Георгий Николаевич
  • Голуб Юрий Михайлович
  • Калия Олег Леонидович
RU2379089C1
НЕТКАНЫЙ МИКРОПОРИСТЫЙ МАТЕРИАЛ ДЛЯ СЕПАРАТОРОВ ХИМИЧЕСКИХ ИСТОЧНИКОВ ТОКА И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2003
  • Захарьян Арам Арташесович
  • Садовский Богдан Феодосиевич
  • Будыка Александр Константинович
  • Филатов Юрий Николаевич
  • Саакян Сурен Григорьевич
RU2307428C2
ФИЛЬТРУЮЩИЙ МАТЕРИАЛ ДЛЯ ТОНКОЙ ОЧИСТКИ ГАЗОВ И СПОСОБ ПОЛУЧЕНИЯ 2009
  • Филатов Юрий Николаевич
  • Якушкин Михаил Сергеевич
  • Гуляев Артем Игоревич
RU2429048C2
ФИЛЬТРУЮЩИЙ МАТЕРИАЛ, СПОСОБ ПОЛУЧЕНИЯ ФИЛЬТРУЮЩЕГО МАТЕРИАЛА И РЕСПИРАТОР 2005
  • Филатов Юрий Николаевич
  • Будыка Александр Константинович
  • Мамагулашвили Виссарион Георгиевич
  • Филатов Иван Юрьевич
RU2283164C1
ФИЛЬТРУЮЩИЙ МАТЕРИАЛ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2007
  • Капустин Иван Александрович
  • Филатов Иван Юрьевич
  • Филатов Юрий Николаевич
  • Архипов Сергей Юрьевич
  • Огородников Борис Иванович
  • Будыка Александр Константинович
RU2349369C1
ФИЛЬТРУЮЩИЙ МАТЕРИАЛ 2004
  • Филатов Юрий Николаевич
  • Будыка Александр Константинович
  • Мартынюк Юрий Николаевич
  • Филатов Иван Юрьевич
RU2284846C2
НЕТКАНЫЙ МИКРОПОРИСТЫЙ МАТЕРИАЛ ДЛЯ СЕПАРАТОРОВ ХИМИЧЕСКИХ ИСТОЧНИКОВ ТОКА И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2003
  • Садовский Богдан Феодосиевич
  • Будыка Александр Константинович
  • Филатов Юрий Николаевич
  • Захарьян Арам Арташесович
  • Саакян Сурен Григорьевич
RU2279157C2
СОРБЦИОННО-ФИЛЬТРУЮЩИЙ КОМПОЗИЦИОННЫЙ МАТЕРИАЛ 2009
  • Филатов Юрий Николаевич
  • Филатов Иван Юрьевич
  • Капустин Иван Александрович
RU2414960C1
ФИЛЬТРУЮЩИЙ МАТЕРИАЛ 2000
  • Филатов Ю.Н.
  • Гринченко А.И.
  • Басманов П.И.
  • Будыка А.К.
RU2188693C2
СПОСОБ ПОЛУЧЕНИЯ ФИЛЬТРУЮЩЕГО ПОЛИМЕРНОГО МАТЕРИАЛА И ФИЛЬТРУЮЩИЙ МАТЕРИАЛ 2011
  • Мамагулашвили Виссарион Георгиевич
  • Негин Андрей Евгеньевич
  • Луканина Ксения Игоревна
  • Шепелев Алексей Дмитриевич
  • Голуб Юрий Михайлович
  • Ворожцов Георгий Николаевич
  • Калия Олег Леонидович
RU2492912C2

Реферат патента 2006 года ФИЛЬТРУЮЩИЙ МАТЕРИАЛ, ФИЛЬТР ДЛЯ ОЧИСТКИ ГАЗОВ ОТ АЭРОЗОЛЕЙ И СПОСОБ ПОЛУЧЕНИЯ ФИЛЬТРУЮЩЕГО МАТЕРИАЛА

Изобретение относится к области тонкой очистки газов фильтрацией. Предложен фильтрующий материал из волокон полисульфона с различным диаметром волокон, полученный путем электроформования из раствора в органическом растворителе с добавкой электролита, и фильтр рамной конструкции, снабженный полученным материалом с плотностью 30-50 г/м2. Изобретение обеспечивает эффективную фильтрацию аэрозольных частиц при высокой термостабильности фильтра. 3 н. и 2 з.п. ф-лы, 1 табл., 1 ил.

Формула изобретения RU 2 270 714 C1

1. Фильтрующий материал, содержащий волокна из полисульфона, полученные путем электростатического формования из раствора, отличающийся тем, что он выполнен из смеси волокон диаметром 0,1-0,5 мкм и диаметром 5-10 мкм при их массовом соотношении (1:25)-(1:5) соответственно.2. Фильтрующий материал по п.1, отличающийся тем, что он выполнен в виде нетканого полотна, имеющего по меньшей мере с одной стороны защитный слой из проклеенных полисульфоновых волокон диаметром 5-10 мкм.3. Фильтр для очистки газов от аэрозолей, содержащий корпус с сепараторами и рамочным элементом, имеющим параллельную развертку и снабженный волокнистым фильтрующим материалом, отличающийся тем, что он содержит фильтрующий материал, охарактеризованный в пп.1 и 2, имеющий общую массовую плотность 30-50 г/м2.4. Способ получения фильтрующего материала, включающий электростатическое формование микроволокна в системе полисульфон-растворитель-электролит, отличающийся тем, что на электроде осаждают смесь полисульфоновых волокон с диаметром 0,1-0,5 мкм и с диаметром 5-10 мкм при их массовом отношении (1:25)-(1:5) соответственно.5. Способ по п.4, отличающийся тем, что формование осуществляют из раствора, содержащего 5-25 мас.% полисульфона в растворителе, выбранном из ряда: дихлорэтан, циклогексанон, бутилацетат, этилацетат, диметилформамид и электролитическую добавку в количестве 0,01-0,2% от массы полисульфона, выбранную из галогенидов тетраэтиламмония и тетрабутиламмония.

Документы, цитированные в отчете о поиске Патент 2006 года RU2270714C1

Ю.Н.Филатов
Электроформование волокнистых материалов (ЭФВ-процесс) - М.: Нефть и газ, 1997, с.180, 201, 191,257)
RU 2055632 C1, 10.09.1996
АЭРОЗОЛЬНЫЙ ФИЛЬТР 2000
  • Басалаев Н.А.
  • Бережной В.М.
  • Зубарев В.В.
  • Иванов В.Д.
  • Плотников В.Г.
  • Земсков А.А.
  • Клинин Е.Н.
  • Облогин В.А.
  • Решетников Е.А.
  • Слепоконь Ю.И.
RU2192916C2
US 6479061 В2, 12.11.2002
ФИЛЬТРУЮЩИЙ МАТЕРИАЛ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 1992
  • Баташова Л.И.
  • Дюдяков В.М.
  • Пестун А.Ф.
  • Сидоров Г.М.
  • Солдатенко Л.А.
  • Чебыкин В.В.
  • Швайченко Ю.П.
  • Щербакова О.А.
RU2017514C1

RU 2 270 714 C1

Авторы

Филатов Юрий Николаевич

Будыка Александр Константинович

Ломазова Людмила Атамовна

Даты

2006-02-27Публикация

2004-09-07Подача