ФИЛЬТРУЮЩИЙ МАТЕРИАЛ ДЛЯ ТОНКОЙ ОЧИСТКИ ГАЗОВ И СПОСОБ ПОЛУЧЕНИЯ Российский патент 2011 года по МПК B01D39/16 B01D53/02 B82B3/00 

Описание патента на изобретение RU2429048C2

Изобретение относится к области получения фильтрующих материалов из микроволокон и нановолокон, и их использования для тонкой очистки воздуха и газовых сред от дисперсных частиц, в том числе радиоактивных аэрозолей при повышенных температурах.

Известен сорбционно-фильтрующий материал для бактериальных фильтров на основе нетканого материала из волокон с диаметром 0,1-10 мкм, выполненных путем электоформования из раствора в органическом растворителе политрифторстирола, или полисульфона, или поли-2,6-диметилфениленоксида, или поли-2,6-дифенилфениленоксида, или полидифениленфталида, или полиоксидифениленфталида (RU 2055632, 07.09.2000).

Известный материал предназначен для бастериальных фильтров и не обеспечивает высокой эффективности при очистке от радиоактивных аэрозолей.

Наиболее близким по технической сущности и достигаемому результату является фильтрующий материал для тонкой очистки газов, содержащий смесь волокон из полисульфона с диаметром 0,1-0,5 мкм и с диаметром 5-10 мкм, полученных путем электростатического формования из раствора, при этом количество волокон с диаметром 0,1-0,5 мкм и с диаметром 5-10 мкм соответствует их массовому соотношению (1:25)-(1:5). Известен также способ получения упомянутого материала путем осаждения на электроде микроволокон различного диаметра из раствора полисульфона в органическом растворителе в присутствии электролитической добавки (RU 2270714, 27.02.2006).

Однако известный материал обладает недостаточной эффективностью в течение длительного времени при температурах выше 120°С из-за деформаций волокон с диаметром 0,1-0,5 мкм.

Задачей настоящего изобретения является разработка фильтрующего материала, пригодного для эффективной очистки газовых сред от аэрозолей, в том числе радиоактивных при температурах до 150°С.

Поставленная задача решается описываемым фильтрующим материалом для тонкой очистки газов, который содержит смесь волокон различного диаметра, полученных методом электроформования из раствора, микроволокна из полисульфона диаметром 5-10 мкм, и нановолокна из полидифениленфталида диаметром 300-500 нм при массовом отношении волокон из полидифениленфталида к волокнам из полисульфона, равном 1:(5-25).

Поставленная задача решается также описываемым способом получения фильтрующего материала для тонкой очистки газов методом электроформования волокон из раствора, включающим осаждение на электроде микроволокон с диаметром 5-10 мкм из системы полисульфон-дихлорэтан-электролит, и осаждение на электроде нановолокон с диаметром 300-500 нм мкм из системы полидифениленфталид-циклогексанон-диметилформамид-электролит при массовом отношении волокон из полидифениленфталида к волокнам из полисульфона, равном 1:(5-25).

Предпочтительно, осаждение волокон производят из раствора, содержащего 5-25 мас.% полисульфона в дихлорэтане и электролитическую добавку в количестве 0,01-0,2% от массы раствора, выбранную из галогенидов тетраэтиламмония и тетрабутиламмония, и из раствора, содержащего 5-25 мас.% полидифениленфталида в растворе, содержащем смесь циклогексанона и диметилформамида в объемном отношении 1:1 и электролитическую добавку в количестве 0,01-0,2% от массы раствора, выбранную из галогенидов тетраэтиламмония и тетрабутиламмония, при этом осаждение волокон из упомянутых растворов осуществляют одновременно с образованием смеси волокон.

В объеме совокупности вышеуказанных признаков полученный материал не теряет своей эффективности при работе в условиях высоких температур вплоть до 150°С.

Упомянутый технический результат достигается по следующим причинам.

Нановолокна с диаметром менее 1 мкм обладают пониженной теплостойкостью, снижающейся по мере уменьшения диаметра, поэтому для их получения был использован более термостойкий полимер - полидифениленфталид с теплостойкостью более 300°C.

Ниже приведены конкретные примеры осуществления заявленного способа получения предложенного фильтрующего материала, а также фильтрующие характеристики полученного материала.

Пример 1

Приготавливают 15% раствор полисульфона в ДХЭ с добавкой тетрабутиламмония йодида 0,01 мас.% с вязкостью 7 П и электропроводностью 5·10-5 См/см для получения волокон с диаметром 7 мкм.

Приготавливают 17 мас.% раствора полидифениленфталида в смеси ЦГН и ДМФА в соотношении 1:1 с добавкой тетрабутиламмония йодида 0,02 мас.% с вязкостью 2 П и электропроводностью 2·10-5 См/см для получения волокон с размером 400 нм.

Эти растворы продавливают через соответствующие дозаторы, помещенные в поле высокого напряжения 80 кВ, и получают методом электроформования на осадительном электроде волокнистый фильтрующий материал со смесью волокон 7 мкм и 400 нм с их массовым соотношением 10/1 соответственно.

Полученный материал выдерживает температуру воздуха 150°C в течение 50 часов, при этом эффективность фильтрации по частицам 0,3 мкм в разряженном состоянии составляет 99,99% при гидродинамическом сопротивлении 52 Па и линейной скорости фильтрации 1 см/с.

Полученным материалом снаряжают фильтр, содержащий рамочные элементы и сепараторы, и испытывают его в реальных условиях на АЭС.

Примеры при других заявленных параметрах сведены в таблицу.

Как видно из приведенных данных, предложенный материал является высокоэффективным средством для очистки газов от радиоактивных аэрозолей, не теряет своей эффективности в условиях длительной эксплуатации при температурах до 150°С и может быть рекомендован к использованию в атомной промышленности.

Похожие патенты RU2429048C2

название год авторы номер документа
ФИЛЬТРУЮЩИЙ ТЕРМОСТОЙКИЙ НАНОВОЛОКНИСТЫЙ МАТЕРИАЛ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2012
  • Филатов Юрий Николаевич
  • Филатов Иван Юрьевич
  • Капустин Иван Александрович
  • Смульская Мария Анатольевна
RU2524936C1
ФИЛЬТРУЮЩИЙ МАТЕРИАЛ, ФИЛЬТР ДЛЯ ОЧИСТКИ ГАЗОВ ОТ АЭРОЗОЛЕЙ И СПОСОБ ПОЛУЧЕНИЯ ФИЛЬТРУЮЩЕГО МАТЕРИАЛА 2004
  • Филатов Юрий Николаевич
  • Будыка Александр Константинович
  • Ломазова Людмила Атамовна
RU2270714C1
Фильтрующий пакет, способ получения мембраны для него и способ изготовления противоаэрозольного фильтра противогаза 2018
  • Коссович Леонид Юрьевич
  • Сальковский Юрий Евгеньевич
  • Гущина Светлана Геннадьевна
  • Меркулов Павел Тимофеевич
  • Абрамов Александр Юрьевич
  • Родионцев Игорь Анатольевич
  • Алексеенко Светлана Сергеевна
  • Ломовцев Олег Сергеевич
  • Любунь Герман Павлович
RU2675924C1
ФИЛЬТРУЮЩИЙ МАТЕРИАЛ, СПОСОБ ЕГО ПОЛУЧЕНИЯ И ПРИМЕНЕНИЕ 2011
  • Филатов Юрий Николаевич
  • Перминов Дмитрий Валерьевич
  • Кириллова Ирина Васильевна
  • Филатов Иван Юрьевич
  • Щуров Павел Михайлович
RU2477644C1
Способ получения фильтрующего материала и фильтрующий материал 2018
  • Коссович Леонид Юрьевич
  • Сальковский Юрий Евгеньевич
  • Меркулов Павел Тимофеевич
  • Абрамов Александр Юрьевич
  • Родионцев Игорь Анатольевич
  • Алексенко Светлана Сергеевна
  • Савонин Сергей Александрович
  • Ломовцев Олег Сергеевич
RU2676066C1
ФИЛЬТРУЮЩИЙ МАТЕРИАЛ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2016
  • Меркулов Павел Тимофеевич
  • Родионцев Игорь Анатольевич
  • Абрамов Александр Юрьевич
  • Сальковский Юрий Евгеньевич
  • Гусев Николай Алексеевич
  • Кириллова Ирина Васильевна
RU2637952C2
СПОСОБ ПОЛУЧЕНИЯ ФИЛЬТРУЮЩЕГО ПОЛИМЕРНОГО МАТЕРИАЛА И ФИЛЬТРУЮЩИЙ МАТЕРИАЛ 2011
  • Мамагулашвили Виссарион Георгиевич
  • Негин Андрей Евгеньевич
  • Луканина Ксения Игоревна
  • Шепелев Алексей Дмитриевич
  • Голуб Юрий Михайлович
  • Ворожцов Георгий Николаевич
  • Калия Олег Леонидович
RU2492912C2
МНОГОСЛОЙНЫЙ ФИЛЬТРУЮЩИЙ МАТЕРИАЛ 2008
  • Шепелев Алексей Дмитриевич
  • Будыка Александр Константинович
  • Рыкунов Владимир Аркадьевич
  • Ушакова Евгения Николаевна
  • Мамагулашвили Виссарион Георгиевич
  • Захарьян Арам Арташезович
  • Сырочко Василий Владимирович
  • Куликов Николай Константинович
  • Буланов Геннадий Анатольевич
  • Коробейникова Александра Васильевна
  • Подплетнева Галина Владимировна
  • Кривощеков Анатолий Паисеевич
  • Ворожцов Георгий Николаевич
  • Голуб Юрий Михайлович
  • Калия Олег Леонидович
RU2379089C1
ФИЛЬТРУЮЩИЙ МАТЕРИАЛ ДЛЯ ЗАЩИТЫ ОТ ВОЗДУШНЫХ ВЗВЕСЕЙ 2019
  • Коссович Леонид Юрьевич
  • Сальковский Юрий Евгеньевич
  • Савонин Сергей Александрович
  • Абрамов Александр Юрьевич
RU2720784C1
МНОГОСЛОЙНЫЙ НЕТКАНЫЙ МАТЕРИАЛ С ПОЛИАМИДНЫМИ НАНОВОЛОКНАМИ 2013
  • Юданова Татьяна Николаевна
  • Афанасов Иван Михайлович
  • Перминов Дмитрий Валерьевич
RU2529829C1

Реферат патента 2011 года ФИЛЬТРУЮЩИЙ МАТЕРИАЛ ДЛЯ ТОНКОЙ ОЧИСТКИ ГАЗОВ И СПОСОБ ПОЛУЧЕНИЯ

Изобретение относится к производству микроволокнистых материалов, используемых для очистки газов. Предложен фильтрующий материал, который содержит микроволокна из полисульфона диаметром 5-10 мкм и нановолокна из полидифениленфталида диаметром 300-500 нм при массовом отношении волокон из полидифениленфталида к волокнам из полисульфона, равном 1:(5-25). Предложен также способ получения материала методом электроформования волокон из раствора, который включает осаждение на электроде микроволокон с диаметром 5-10 мкм из системы полисульфон-дихлорэтан-электролит, и одновременное осаждение на электроде нановолокон с диаметром 300-500 нм из системы полидифениленфталид-циклогексанон-диметилформамид-электролит. Изобретение позволяет повысить эффективность очистки газов при повышенных температурах. 2 н. и 1 з.п. ф-лы, 1 табл.

Формула изобретения RU 2 429 048 C2

1. Фильтрующий материал для тонкой очистки газов, содержащий смесь волокон различного диаметра, полученных методом электроформования из раствора, в том числе микроволокна из полисульфона диаметром 5-10 мкм, отличающийся тем, что он дополнительно содержит нановолокна из полидифениленфталида диаметром 300-500 нм при массовом отношении волокон из полидифениленфталида к волокнам из полисульфона, равном 1:(5-25).

2. Способ получения фильтрующего материала для тонкой очистки газов методом электроформования волокон из раствора, включающий осаждение на электроде микроволокон с диаметром 5-10 мкм из системы полисульфон-дихлорэтан-электролит, отличающийся тем, что на электроде одновременно осаждают нановолокна с диаметром 300-500 нм из системы полидифениленфталид-циклогексанон-диметилформамид-электролит при массовом отношении волокон из полидифениленфталида к волокнам из полисульфона, равном 1:(5-25).

3. Способ по п.2, отличающийся тем, что осаждение волокон производят из раствора, содержащего 5-25 мас.% полисульфона в дихлорэтане и электролитическую добавку в количестве 0,01-0,2% от массы раствора, выбранную из галогенидов тетраэтиламмония и тетрабутиламмония, и из раствора, содержащего 5-25 мас.% полидифениленфталида в растворе, содержащем смесь циклогексанона и диметилформамида в объемном отношении 1:1 и электролитическую добавку в количестве 0,01-0,2% от массы раствора, выбранную из галогенидов тетраэтиламмония и тетрабутиламмония, при этом осаждение волокон из упомянутых растворов осуществляют одновременно с образованием смеси волокон.

Документы, цитированные в отчете о поиске Патент 2011 года RU2429048C2

ФИЛЬТРУЮЩИЙ МАТЕРИАЛ, ФИЛЬТР ДЛЯ ОЧИСТКИ ГАЗОВ ОТ АЭРОЗОЛЕЙ И СПОСОБ ПОЛУЧЕНИЯ ФИЛЬТРУЮЩЕГО МАТЕРИАЛА 2004
  • Филатов Юрий Николаевич
  • Будыка Александр Константинович
  • Ломазова Людмила Атамовна
RU2270714C1
RU 2055632 C1, 10.03.1996
ЭЛЕКТРЕТНЫЙ ВОЛОКНИСТЫЙ ФИЛЬТРУЮЩИЙ МАТЕРИАЛ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2001
  • Филатов Ю.Н.
  • Кузнецов А.А.
  • Драчев А.И.
  • Гильман А.Б.
  • Потапов В.К.
RU2189850C1
СОСТАВ ДЛЯ ПОЛУЧЕНИЯ ФИЛЬТРУЮЩЕГО МАТЕРИАЛА 1992
  • Захарьян А.А.
  • Мамагулашвили В.Г.
  • Ушакова Е.Н.
  • Садовский Б.Ф.
  • Трифонова Л.А.
  • Токарева И.П.
  • Чевтаева В.Т.
  • Болотина Л.М.
  • Конкина Л.В.
RU2045996C1
US 7070836 A, 04.07.2006
US 75922776 A, 22.09.2009
US 6790528 A, 14.09.2004.

RU 2 429 048 C2

Авторы

Филатов Юрий Николаевич

Якушкин Михаил Сергеевич

Гуляев Артем Игоревич

Даты

2011-09-20Публикация

2009-11-06Подача